
Capabilities and Effects
Aaron Craig, Alex Potanin, Lindsay Groves

ECS, VUW, NZ
alex@ecs.vuw.ac.nz

Jonathan Aldrich
ISR, CMU, USA

jonathan.aldrich@cs.cmu.edu

CCS Concepts • Software and its engineering→ Gen-
eral programming languages; • Social and professional
topics → History of programming languages;
ACM Reference Format:
Aaron Craig, Alex Potanin, Lindsay Groves and Jonathan Aldrich.
2017. Capabilities and Effects. In Proceedings of ACM SIGPLAN
OCAP Workshop (OCAP’17). ACM, New York, NY, USA, 3 pages.
https://doi.org/

1 Introduction
Capability-safe languages prohibit the ambient authority [5]
that is present in non-capability-safe languages. An imple-
mentation of a logger in OCaml or Java, for example, does
not need to be passed a capability at initialisation time; it
can simply import the appropriate file-access library and
open the log file for appending itself. Critically, a malicious
implementation of such a component could also delete the
log, read from another file, or exfiltrate logging information
over the network. Other mechanisms such as sandboxing
can be used to limit the effects of such malicious components,
but recent work has found that Java’s sandbox (for example)
is difficult to use and is therefore often misused [1].

If capabilities are useful for informal reasoning, shouldn’t
they also aid in formal reasoning? Work by Drossopoulou
et al. [4] sheds some light on this question by presenting a
logic that formalizes capability-based reasoning about trust
between objects. Two other trains of work, rather than for-
malise capability-based reasoning itself, reason about how
capabilities may be used. Dimoulas et al. [3] developed a
formalism for reasoning about which components may use
a capability and which may influence (perhaps indirectly)
the use of a capability. Devriese et al. [2] formulate an effect
parametricity theorem that limits the effects of an object
based on the capabilities it possesses, and then use logical
relations to reason about capability use in higher-order set-
tings. Overall, this prior work presents new formal systems
for reasoning about capability use, or reasoning about new
properties using capabilities.
We are interested in a different question: can capabilities

be used to enhance formal reasoning that is currently done
without relying on capabilities? In other words, what value
do capabilities add to existing formal reasoning?

To answer this question, we decided to pick a simple and
practical formal reasoning system, and see if capability-based
reasoning could help. A natural choice for our investigation

OCAP’17, 2017, Vancouver, Canada
2017.

is effect systems [6] — a relatively simple formal reasoning
approach that can make the difference made by capabilities
more obvious. Furthermore, effects have an intuitive link
to capabilities: in a system that uses capabilities to protect
resources, an expression can only have an effect on a resource
if it is given a capability to do so.
How could capabilities help with effects? One challenge

to the wider adoption of effect systems is their annotation
overhead [7]. Effect inference can be used to reduce the an-
notations required, but this has significant drawbacks: under-
standing error messages that arise through effect inference
requires a detailed understanding of the internal structure of
the code, not just its interface. Capabilities are a promising
alternative for reducing the overhead of effect annotations,
as suggested by the following example:

1 import log : String -> Unit with {File.write} in

2 e

In a capability-safe language, what can we infer about
the effects on resources (e.g. the file system or network)
when evaluating the unannotated code e? Since we are in a
capability-safe language, e has no ambient authority, and so
the only way it can have any effect on resources is via the log
function it imports from its annotated surroundings. Note
that this reasoning requires nothing about e other than that
it obeys the rules of a capability-safe language; in particular,
we don’t require any effect annotations within e, and we
don’t need to analyse its structure as an effect inference
would have to do. e could also be arbitrarily large, perhaps
consisting of an entire program that we have downloaded
from a source that we trust enough to allow it to write to
a log, but that we don’t trust to access any other resources.
Thus in this scenario, capabilities can be used to reason “for
free” about the effect of a large body of code based on a few
annotations on the components it imports.

The central intuition is this: the effect of an unannotated
expression can be given a bound based on the effects latent
in variables that are in scope. Of course, there are challenges
to solve on the way, most notably involving higher-order
programs: how can we generalise this intuition if log takes
a higher-order argument? If e evaluates not to unit but to a
function, what can we infer about that function’s effects?

2 Unannotated Client
Consider the following example. There is a single primi-
tive capability File, exposing some operations to a system

https://doi.org/


OCAP’17, 2017, Vancouver, Canada Aaron Craig, Alex Potanin, Lindsay Groves and Jonathan Aldrich

resource. A logger module possessing this capability ex-
poses a function log which incurs File.write when exe-
cuted. The client module, possessing the logger module,
exposes a function runwhich invokes logger.log, incurring
File.write. While logger has been annotated, client has
not. If client.run is executed, what effects might it have?

1 module def logger(f: {File}):Logger

2 def log(): Unit with {File.append} =

3 f.append(``message logged'')

4

5 module def client(logger: Logger)

6 def run(): Unit =

7 logger.log()

8

9 require File

10 instantiate logger(File)

11 instantiate client(logger)

12 client.run()

Our proposal translates the Wyvern code above to a set
of simple nested functions following Newspeak-style ob-
ject capabilities, as shown below. The first two functions,
MakeLogger and MakeClient, instantiate the logger and
clientmodules. Lines 1-3 define MakeLogger. When given a
File, it returns a function representing logger.log. Lines 5-
8 define MakeClient. When given a Logger, it returns a func-
tion representing client.run. Lines 10-14 define MakeMain
which returns a function that, when executed, instantiates
all other modules and executes the code in the body of Main.
Program execution begins on line 16, where the initial capa-
bilities are passed into Main — in this case, just File.

1 let MakeLogger =

2 (λf: File.

3 λx: Unit. f.append) in

4

5 let MakeClient =

6 (λlogger: Unit →{File.append} Unit.

7 import(File.append) l = logger in

8 λx: Unit. l unit) in

9

10 let MakeMain =

11 (λf: File.

12 let loggerModule = MakeLogger f in

13 let clientModule = MakeClient loggerModule in

14 clientModule unit) in

15

16 MakeMain File

On line 7, an import expression selects the authority
{File.append} for its unannotated body on line 8. This is a
well-typed example, as the body can be typechecked using
only those free variables imported, and the authority passed
in via the logger function does not exceed {File.append}. It

is therefore safe to assume that {File.append} is an upper-
bound on the effects incurred from evaluating the body;
indeed, a lambda abstraction has no effect, though it could
be used to incur one later. But since it was defined inside the
import expression (or passed into it), it must also have the
effects contained in {File.append}, so we can effect-check
it as such without having to annotate or infer its parts.

3 Polymorphic Effects
The previous example shows how capability safety can be
used to infer the effects in unannotated code by inspecting
the capabilites we pass into it. We saw an example where
functions with a fixed set of effects were imported, but the
same reasoning also applies to types which are polymorphic
over a set of effects, such as the function below, which is
polymorphic over the {File.write, Socket.write} effects.
After fixing a particular subset Φ of these effects, it asks for
a function with those effects and then incurs them.

1 polywriter =

2 λΦ ⊆ {File.write, Socket.write}.

3 (λf: Unit →Φ Unit. f unit)

If a piece of unannotated code were given a polywriter,
it would be safe to approximate its effects as the polymorphic
upper bound {File.write, Socket.write}. But we can do
better: if no capability for Socket.write is passed in with
the polywriter, then although it could theoretically accept
functions which incur Socket.write, it will never be able to
obtain one. The example below shows such a situation:

1 import({File.write})

2 pw = polywriter

3 fw = (λf: Unit. File.write)

4 in

5 e

Since only a file-writing capability is passed in with poly
writer, it can never be made to incur Socket.write, so a
better approximation of e would be {File.write}. While a
full exploration of capability rules for effect polymorphism
is still being finalised, the discussion above suggests the
potential to extend the ideas here to a polymorphic setting.

References
[1] Zack Coker, MichaelMaass, TianyuanDing, Claire Le Goues, and Joshua

Sunshine. 2015. Evaluating the Flexibility of the Java Sandbox (ACSAC
2015). ACM, 1–10. https://doi.org/10.1145/2818000.2818003

[2] Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Rea-
soning about Object Capabilities with Logical Relations and Effect
Parametricity. In IEEE European Symposium on Security and Privacy.

[3] Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong.
2014. Declarative policies for capability control. In Computer Security
Foundations Symposium.

[4] Sophia Drossopoulou, James Noble, Toby Murray, and Mark S.
Miller. 2015. Reasoning about Risk and Trust in an Open World.
Technical Report. VUW. http://ecs.victoria.ac.nz/foswiki/pub/Main/
TechnicalReportSeries/ECSTR15-08.pdf

https://doi.org/10.1145/2818000.2818003
http://ecs.victoria.ac.nz/foswiki/pub/Main/TechnicalReportSeries/ECSTR15-08.pdf
http://ecs.victoria.ac.nz/foswiki/pub/Main/TechnicalReportSeries/ECSTR15-08.pdf


Capabilities and Effects OCAP’17, 2017, Vancouver, Canada

[5] Mark S. Miller. 2006. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. Ph.D. Dissertation. Johns
Hopkins University.

[6] Flemming Nielson and Hanne Riis Nelson. 1999. Type and Effect Sys-
tems. Commun. ACM , 114–136. https://doi.org/10.1145/361604.361612

[7] Lukas Rytz, Martin Odersky, and Philipp Haller. 2012. Lightweight
Polymorphic Effects. In Proceedings of the 26th European Conference
on Object-Oriented Programming (ECOOP’12). Springer-Verlag, Berlin,
Heidelberg, 258–282.

https://doi.org/10.1145/361604.361612

	1 Introduction
	2 Unannotated Client
	3 Polymorphic Effects
	References

