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Abstract

In this paper we use pre-existing language support for both reference and object capabilities to enable
sound runtime verification of representation invariants. Our invariant protocol is stricter than the other
protocols, since it guarantees that invariants hold for all objects involved in execution. Any language
already offering appropriate support for reference and object capabilities can support our invariant protocol
with minimal added complexity. In our protocol, invariants are simply specified as methods whose execution
is statically guaranteed to be deterministic and to not access any externally mutable state. We formalise our
approach and prove that our protocol is sound, in the context of a language supporting mutation, dynamic
dispatch, exceptions, and non-deterministic I/O. We present case studies showing that our system requires
a lighter annotation burden compared to Spec#, and performs orders of magnitude less runtime invariant
checks compared to the ‘visible state semantics’ protocols of D and Eiffel.
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1. Introduction

Representation invariants (sometimes called class invariants, object invariants, or type refinements) are a
useful concept when reasoning about software correctness, particularly with Object Oriented (OO) languages.
Such invariants are predicates on the state of an object and its reachable object graph (ROG). They can
be presented as documentation, checked as part of static verification, or, as we do in this paper, monitored
for violations using runtime verification. In our system, a class specifies its invariant by defining a method
called invariant() that returns a Boolean. We say that an object’s invariant holds when its invariant()
method would return true.1 In a purely functional setting, the programmer only needs to write the code
for the invariant check itself, then the runtime needs to call this code each time a value/object is created
(or in the case of refinement types, converted to such a type).

In an impure setting, like most OO languages, operations on data structures are often implemented as
complex sequences of mutations, where the invariant is temporarily broken. To support this behaviour, most
invariant protocols present in the literature allow invariants to be broken and observed broken. The two main
forms of invariant protocols are visible state semantics [2] and the Pack-Unpack/Boogie methodology [3]. In
visible state semantics, invariants can be broken when a method on the object is active (that is, currently
executing). Some interpretations of the visible state are more permissive, requiring the invariants of receivers
to hold only before and after every public method call, and after constructors. In the pack-unpack approach,
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objects are either in a ‘packed’ or ‘unpacked’ state, the invariant of ‘packed’ objects must hold, whereas
unpacked objects can be broken. To complicate matters further, OO languages often permit rampant aliasing
of mutable state, thus any mutation may inadvertently break the invariant of an arbitrary object.

In this paper we propose a much stricter invariant protocol: at all times, the invariant of every object
involved in execution must hold; thus they can be broken when the object is not (currently) involved in
execution. An object is involved in execution when it is in the reachable object graph of any of the objects
mentioned in the method call, field access, or field update that is about to be reduced; we state this more
formally later in the paper.

Our strict protocol supports easier reasoning: an object can never be observed broken. However at first
glance it may look overly restrictive, preventing useful program behaviour. Consider the iconic example of
a Range class, with a min and max value, where the invariant requires that min<max:
class Range{

private field min; private field max;
method invariant (){ return min <max; }
method set(min , max ){

if(min >= max ){ throw new Error (/**/); }
this.min = min;
this.max = max;

}
}

In this example we omit types to focus on the runtime semantics. The code of set does not violate visible
state semantics: this.min = min may temporarily break the invariant of this, however it will be fixed after
executing this.max = max. Visible state allows such temporary breaking of invariants since we are inside a
method on this, and by the time it returns, the invariant will be re-established. However, if min is greater
than or equal to this.max, set would violate our stricter approach. The execution of this.min = min would
break the invariant of this and this.max = max would then involve a broken object. If we were to inject a call
Do.stuff(this); between the two field updates, arbitrary user code could observe a broken object; adding
such a call is however allowed by visible state semantics.

In this paper, we illustrate the box pattern, where we can provide a modified Range class with the desired
client interface, while respecting the principles of our strict protocol:
class BoxRange {//no invariant in BoxRange

field min; field max;
BoxRange (min , max ){ this.set(min , max ); }
method Void set(min , max ){

if(min >= max ){ throw new Error (/**/); }
this.min = min;
this.max = max;

}
}
class Range{

private field box; // box contains a BoxRange
Range (min , max ){ this.box = new BoxRange (min , max ); }
method invariant (){ return this.box.min < this.box.max; }
method set(min , max ){ return this.box.set(min ,max ); }

}

The code of Range.set(min,max) does not violate our protocol. The call to BoxRange.set(min,max) works in
a context where the Range object is unreachable, and thus not involved in execution. That is, the Range
object is not in the reachable object graph of the receiver or the parameters of BoxRange.set(min,max). Thus
Range.set(min,max) can temporarily break the Range’s invariant. By using the box field as an extra level of
indirection, we restrict the set of objects involved in execution while the state of the object Range is modified.
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2Due to its simplicity and versatility, we do not claim this pattern to be a contribution of our work, as we expect others
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With appropriate type annotations (simple keywords attached to fields, method receivers, paramaters,
and return types), the code of Range and BoxRange is accepted as correct by our system: no matter how
Range objects are used, a broken Range object will never be involved in execution. In particular, our system
ensures that the Range.set method cannot pass this, or an alias to this, to the box.set method.3

Contributions
Invariant protocols allow for objects to make necessary changes that might make their invariant temporarily
broken. In visible state semantics any object that has an active method call anywhere on the call stacks is
potentially invalid; arguably not a very useful guarantee as observed by Gopinathan et al.’s work [5], which
used runtime instrumentation to determine if a memory update has violated the invariant of any live object,
even if it is not reachable from the current stack frame. Approaches such as pack/unpack [3] represent
potentially invalid objects in the type system; this encumbers the type system and the syntax with features
whose only purpose is to distinguish objects with broken invariants. The core insight behind our work is
that we can use a small number of decorator-like design patterns to avoid exposing those potentially invalid
objects in the first place, thus avoiding the need for representing them at the type level.

In this paper, we discuss how to combine runtime checks and capabilities to soundly enforce our strict
invariant protocol. Our sound solution only requires that all code is well-typed. Our approach works in the
presence of mutation, I/O, non-determinism, and exceptions, all under an open world assumption.

We formalise and prove our approach sound, and have fully implemented our protocol in L424, and used
it to run our various case studies. It is important to note that unlike most prior work, we soundly handle
catching of invariant failures and I/O.

The remainder of this paper proceeds as follows:

• Section 2 explains background information necessary to understand our approach.

• Section 3 fully explains our novel invariant protocol, and our novel field kind for mutable data.

• Section 4 demonstrates why the soundness of our protocol depends on the properties of the type system
of L42, and similar languages.

• Section 5 formalises our runtime invariant checking, and what it means to soundly enforce our invariant
protocol.

• Section 6 contains many case studies, showing that our protocol is more succinct than the pack/unpack
approach and much more efficient then the visible state semantic.

• Section 7 shows how our approach does not hamper expressiveness, by showing programming patterns
that can be used to perform batch mutation operations with a single invariant check, and how the
state of a ‘broken’ object can be safely passed around.

• Section 8 summarises how we have implemented our protocol in L42.

• Section 9 presents related work, and Section 10 concludes.

• Appendix A formally specifies the properties a type system needs to guarantee, and proves the for-
malism in Section 5 sound.

to have used it before. We have however not been able to find it referenced with a specific name in the literature, though
technically speaking, it is a simplification of the Decorator pattern, but with a different goal. While in very specific situations
the overhead of creating such additional box object may be unacceptable, we designed our work for environments where such
fine performance differences are negligible. Also note that many VMs and compilers can optimise away wrapper objects in
many circumstances. [4] This is even more applicable in languages with inlined structs, like C++ or C#.

3Note that our system does not require that the min and max fields use primitive immutable number types, in fact, they
could store complex (and possibly cyclic) mutable data; our system will ensure that this data can only be mutated within the
Range.set method (or other similar methods within the enclosing Range).

4Our implementation works by checking that a given class conforms to our protocol, and injecting invariant checks in the
appropriate places. An anonymised version of L42, supporting the protocol described in this paper, together with the full code
of our case studies, is available at http://l42.is/InvariantArtifact.zip.
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• Appendix B presents a simple L42-inspired type system and proves that it satisfies the requirements
in Appendix A.

2. Background on Reference and Object Capabilities

Reasoning about imperative OO programs is a non-trivial task, made particularly difficult by mutation,
aliasing, dynamic dispatch, I/O, and exceptions. There are many ways to perform such reasoning; instead of
using automated theorem proving, it is becoming more popular to verify aliasing and immutability properties
using a type system. For example, three languages: L42 [6, 7, 8, 9], Pony [10, 11], and the language of Gordon
et al. [12] use reference capabilities5 and object capabilities to statically ensure deterministic parallelism and
the absence of data races. While studying those languages, we discovered an elegant way to enforce invariants:
we use capabilities to restrict how/when the result of invariant methods changes; this is done by restricting
I/O, and how mutation through aliases can affect the state seen by invariants.

That is, our work shows that reference and object capabilities are useful also outside of the context of
safe parallelism.

Reference Capabilities
Reference capabilities, as used in this paper, are a type system feature that allows reasoning about aliasing
and mutation. A more recent design for them has emerged that radically improves their usability; three
different research languages are being independently developed relying on this new design: the language of
Gordon et al., Pony, and L42. These projects are quite large: several million lines of code are written in
Gordon et al.’s language and are used by a large private Microsoft project; Pony and L42 have large libraries
and are active open source projects. In particular the reference capabilities of these languages are used to
provide automatic and correct parallelism [12, 10, 11, 7].

Reference capabilities are a well known mechanism [13, 14, 15, 10, 9, 12] that allow statically reasoning
about the mutability and aliasing properties of objects. Here we refer to the interpretation of [12], that
introduced the concept of recovery/promotion. This concept is the basis for L42, Pony, and Gordon et al.’s
type systems [12, 7, 6, 10, 11]. With slightly different names and semantics, those languages all support the
following reference capabilities for object references:

• Mutable (mut): the referenced object can be mutated and shared/aliased without restriction; as in
most imperative languages without reference capabilities.

• Immutable (imm): the referenced object cannot be mutated, not even through other aliases. An object
with any imm aliases is an immutable object. Any other object is a mutable object. All objects are born
mutable and may later become immutable. Thus, an object can be classified as mutable even if it has
no fields that can be updated or mutated.

• Readonly (read): the referenced object cannot be mutated by such references, but there may also be
mutable aliases to the same object, thus mutation can be observed. Readonly references can refer to
both mutable and immutable objects, as read types are supertypes of both their imm and mut variants.

• Encapsulated (capsule): every mutable object in the reachable object graph of a capsule reference
(including itself) is only reachable through that reference. Immutable objects in the reachable object
graph of a capsule reference are not constrained, and can be freely referred to without passing through
that reference.

There are only two kinds of objects: mutable and immutable, but there are more kinds of reference capabil-
ities. In L42 only mut and imm references can be saved on the heap: capsule and read references only exists
on the stack.

Reference capabilities are different to field or variable qualifiers like Java’s final: reference capabilities
apply to references, whereas final applies to fields themselves. Unlike a variable/field of a read type, a

5reference capabilities are called Type Modifiers in former works on L42.
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final variable/field cannot be reassigned, it always refers to the same object, however the variable/field can
still be used to mutate the referenced object. On the other hand, an object cannot be mutated through a
read reference, however a read variable can still be reassigned.6

Reference capabilities are applied to all types. This includes types in the receiver and parameters of
methods. A mut method is a method where this is typed mut; An imm method is a method where this is
typed imm, and so on for all the other reference capabilities.

Consider the following example usage of mut, imm, and read, where we can observe a change in rp caused
by a mutation inside mp.
mut Point mp = new Point (1, 2);
mp.x = 3; // ok
imm Point ip = new Point (1, 2);
//ip.x = 3; // type error
read Point rp = mp;
//rp.x = 3; // type error
mp.x = 5; // ok , now we can observe rp.x == 5
ip = new Point (3, 5); // ok , ip is not final

Reference capabilities influence the access to the whole reachable object graph; not just the referenced
object itself, as in the full/deep interpretation of type modifiers [16, 17]:

• A mut field accessed from a read reference produces a read reference; thus a read reference cannot be
used to mutate the reachable object graph of the referenced object.

• Any field accessed from an imm reference produces an imm reference; thus all the objects in the reachable
object graph of an immutable object are also immutable.

A common misconception of this line of work is that a mut field will always refer to a mutable object. Classes
declare reference capabilities for their methods and field types, but what kinds of object is stored in a field
also depends on the kind of the object: a mut field of a mutable object will contain a mutable object; but
a mut field of an immutable object will contain an immutable object. This is different with respect to work
prior to Gordon et al.’s [12], where the declaration fully determines what values can be stored. In those other
approaches, any contextual information must be explicitly passed through the type system, for example,
with a generic reference capability parameter.

Another common misconception is the belief that capsule fields and capsule local variables always hold
capsule references, i.e. the referenced object cannot be reached except via that field/variable. How capsule
local variables are handled differs widely in the literature:

In L42, a capsule local variable always holds a capsule reference: this is ensured by allowing them to be
read only once (similar to linear and affine types [18]). For example:
method mut Point foo(mut Point mp) {

mp.x += 3; // mp is mut , so it can be used twice
mp.y -= 3;

}

capsule Point cp = new Point (1, 2);
//cp.x = 3; cp.y = 3; // type error: cannot use ‘cp’ more than once
capsule Point cp2 = foo(cp); // ok , since foo(cp) only uses capsule variables
foo(cp2 ); // ok , ‘cp2 ’ is used only once

Pony and Gordon et al. follow a more complicated approach: capsule variables can be accessed multiple
times, however in those cases the result will not be a capsule reference but another kind of reference, that
can be promoted to capsule, but only under certain conditions. Pony and Gordon also provide destructive
reads, where the variable’s old value is returned as capsule.

6In C, this is similar to the difference between A* const (like final) and const A* (like read), where const A* const
is like final read.
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Like capsule variables, how capsule fields are handled differs widely in the literature, however they must
always be initialised and updated with capsule references. In order for access to a capsule field to safely
produce a capsule reference, Gordon et al. only allows them to be read destructively (i.e. by replacing the
field’s old value with a new one, such as null). In contrast, Pony does not guarantee that capsule fields
contain a capsule reference at all times, as it also provides non-destructive reads.

The formal model of L42 [19] does not contain capsule fields. The L42 concrete language interprets the
syntax for capsule fields as private mut fields with some extra restrictions, including being initialised and
updated only with capsule references. Those encapsulated fields (which do not support destructive reads)
facilitate parallelism and can model various forms of ownership.7 In Section 3 we present a novel kind of
“rep” field. These, like capsule fields, can only be initialised/updated with capsule references, however alias
to it can be created in restricted ways. Unlike capsule fields, which are usually designed for safe parallelism,
these rep fields are specifically useful for invariant checking; we added support for them to L42, and believe
they could be easily added to Pony and Gordon et al.’s language.

Promotion and Recovery
Many different techniques and type systems handle the reference capabilities above [16, 20, 21, 12, 6]. The
main progress in the last few years is with the flexibility of such type systems: where the programmer
should use imm when representing immutable data and mut nearly everywhere else. The system will be able
to transparently promote/recover [12, 10, 6] the reference capability, adapting them to their use context. To
see a glimpse of this flexibility, consider the following:

mut Circle mc = new Circle (new Point (0, 0), 7);
capsule Circle cc = new Circle (new Point (0, 0), 7);

imm Circle ic = new Circle (new Point (0, 0), 7);

Here mc, cc, and ic are all syntactically initialised with the same exact expression. All new expressions return
a mut [10, 19], so mc is well typed. The declarations of cc and ic are also well typed, since any expression
(not just new expressions) of a mut type that has no mut or read free variables can be implicitly promoted
to capsule or imm. This requires the absence of read and mut global/static variables, as in L42, Pony, and
Gordon et al.’s language. L42 also allows such expression to use read free variables as well as mut variables
as if they were read. For this to be sound, L42 does not allow read fields.

This is the main improvement on the flexibility of reference capabilities in recent literature [7, 6, 12, 10,
11]. From a usability perspective, this improvement means that programmers can write many classes simply
using mut types and be free to have rampant aliasing. Then, at a later stage, another programmer may still
be able to encapsulate instances of those data structures into an imm or capsule reference.

For example, imagine a program where most objects belong to classes designed without worrying about
ownership, aliasing and encapsulation and with most methods requiring mutation. Thanks to the flexibility
discussed above, those objects can still take advantage of our invariant protocol; we just need to apply our
Box pattern around those.

Exceptions
In most languages exceptions may be thrown at any point. Combined with mutation this complicates
reasoning about the state of programs after exceptions are caught: if an exception was thrown while mutating
an object, what state is that object in? Does its invariant hold? The concept of strong exception safety [22, 8]
simplifies reasoning: if a try–catch block caught an exception, the state visible before execution of the try
block is unchanged, and the exception object does not expose any object that was being mutated; this
prevents exposing objects whose invariant was left broken in the middle of mutations.

L42 enforces strong exception safety for unchecked exceptions using reference capabilities8 in the following
way:9

7It may seem surprising that those weaker forms of encapsulation are still sufficient to ensure safe unobservable parallelism.
The detailed way L42 parallelism works is unrelated to the presented work. Please see the tutorial on Forty2.is (specifically,
section 5 and 6) for more information on parallelism in L42.

8This is needed to support safe parallelism. Pony takes a drastic approach and not support exceptions. We are not aware
of how Gordon et al. handles exceptions, however to have sound unobservable parallelism it must have some restrictions.

9Formal proof that these restriction are sufficient is in the work of Lagorio and Servetto [8].
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• Only imm objects may be thrown as unchecked exceptions.

• Code inside a try block that captures unchecked exceptions is typed as if all variables declared outside
of the block are final and all those of a mut type were read. With such restrictions those try-catches
can not rely on side effects to produce a result. In L42 try-catch is an expression, so the try can
produce a result without the need of updating local variables. In a language where the try-catch is a
statement, the try can still produce a result; for example using the return keyword.

This strategy does not restrict when exceptions can be thrown, but only restricts when unchecked exceptions
can be caught. Strong exception safety allows us to throw invariant failures as unchecked exceptions: if an
object’s reachable object graph was mutated into a broken state within a try, when the invariant failure
is caught, the mutated object will be unreachable/garbage-collectable. This works since strong exception
safety guarantees that no object mutated within a try is visible when it catches an unchecked exception.10

For example:
// unchecked and checked exception types
class MyUnchecked extends RuntimeException { }
class MyChecked extends Exception { }

class Point {
imm Int x; imm Int y;
mut method Void add(imm Int d) throws MyChecked {

this.x += d; this.y += d;
if (...) { throw new MyUnchecked (); }// Always ok throwing unchecked exceptions
if (...) { throw new MyChecked (); }//Ok: ‘MyChecked ’ is in the ‘throws ’

}}
...
try {

mut Point p = new Point (1, 2)
try {

p.add( someNumber ); // could throw a MyChecked , or any unchecked exception
if (...) { p = new Point (...); } // update a local variable

}
catch ( MyChecked e) { ... }// Ok
// Adding the following ‘catch ’ would be a type error ,
// as the body of the try needs ‘p’ to be non -final and mut:
// catch ( MyUnchecked e) { ... }
...
try { if (p.x != p.y) { throw new MyUnchecked (); } }
catch ( MyUnchecked e) { // Ok:

// the try part can be typed where ‘p’ is seen as final and read
// we can be sure the value of ‘p’ has not changed
// but we can change it here
p = new Point (...) // or p.x+1;

}
}
catch ( MyUnchecked e) { ... } // ok , ‘p’ is guaranteed to be unreachable

Similarly to Java, L42 distinguishes between checked and unchecked exceptions, strong exception safety
is only enforced for unchecked exceptions, and so try-catches over checked exceptions impose no limits on
object mutation during the try.

Object Capabilities
Object capabilities, which L42, Pony, and Gordon et al.’s work have, are a widely used [23, 24, 25, 26]
programming technique where access rights to resources are encoded as references to objects. When this

10Transactions are another way of enforcing strong exception safety, but they require specialised and costly run time support.
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style is respected, code unable to reach a reference to such an object cannot use its associated resource.
Here, as in Gordon et al.’s work, we enforce the object capabilities pattern with reference capabilities in
order to reason about determinism and I/O. To properly enforce this, the object capabilities style needs
to be respected while implementing the primitives of the standard library, and when performing foreign
function calls that could be non-deterministic, such as operations that read from files or generate random
numbers. Such operations would not be provided by static methods, but instead by instance methods of
classes whose instantiation is kept under control by carefully designing their implementation.

For example, in Java, System.in is a capability object that provides access to the standard input resource.
However, since it is globally accessible it completely prevents reasoning about determinism. In contrast, if
Java were to respect the object capability style, the main method could take a System parameter, as in
public static void main( System s){... s.in (). read () ...}

Calling methods on that System instance would be the only way to perform I/O; moreover, the only System
instance would be the one created by the runtime system before calling main(s). This design has been
explored by Joe-E [27].

Object capabilities are typically not part of the type system nor do they require runtime checks or special
support beyond that provided by a memory safe language.

However, L42 has no predefined standard library, but many can be defined by the community. Thus,
the only way to perform I/O operations is via foreign function calls. Since enforcing the object capabilities
pattern can not be done via a unique standard library, the type system of L42 directly enforces the object
capabilities pattern as follows:

• Foreign methods (which have not been whitelisted as deterministic) and methods whose names start
with #$ are capability operations.

• Classes containing capability operations are capability classes.

• Constructors of capability classes are also capability operations.

• Capability operations can only be called by other capability operations or mut/capsule methods of
capability classes.

• In L42 there is no main method, rather it has several main expressions; such expressions can also call
capability operations, thus they can instantiate object capabilities and pass them around to the rest
of the program.

3. Our Invariant Protocol

All classes contain a read method Bool invariant() {..}, if no invariant() method is explicitly present,
a trivial one returning true is assumed.

Our protocol guarantees that the whole reachable object graph of any object involved in execution
(formally, in a redex) is valid : if you can use an object, manually calling invariant() on it is guaranteed to
return true in a finite number of steps.11

As the invariant() is used to determine whether this is broken, it may receive a broken this; however
this will only occur for calls to invariant() inserted by our approach. User written calls to invariant() are
guaranteed to receive a valid this.

We restrict invariant() methods so that they represent a predicate over the receiver’s imm and rep fields.
To ensure that invariant() methods do not expose a potentially broken this to the other objects, we require
that all occurrences of this12in the invariant()’s body are the receiver of a field access (this.f) of an imm/rep

11We will show later how we satisfy this constraint without solving the halting problem or requiring all invariant() methods
to be total.

12Some languages allow the this receiver to be implicit. For clarity in this work we require this to be always used explicit.
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field, or the receivers of a method call (this.m(..)) of a final (non-virtual) method that in turn satisfies
these restrictions. No other uses of this are allowed, such as as the right hand side of a variable declaration,
or an argument to a method. An equivalent alternative design could instead rely on static invariant(..)
methods taking each imm/rep field as an imm/read parameter.

Invariants can only refer to immutable and encapsulated state. Thus while we can easily verify that a
doubly linked list of immutable elements is correctly linked up, we can not do the same for a doubly linked
lists of unencapsulated mutable elements. We do not make it harder to correctly implement lists of mutable
elements, we only limit what invariants can be expressed in our protocol. In particular, as the nodes of the
list must be mutable (since they reference the mutable elements), for these to be referenced in the invariant
method, they must be reachable from a rep field, but then the elements of the list cannot be made accessible
as mut from outside the list.13 Note that we could use the transform pattern presented in Section 7 to mutate
the elements of such a list, in a way that does not allow aliases to be saved outside.

There is a line of work [28] striving to allow invariants over other forms of state. We have not tried
to integrate such solutions into our work, as we believe it would make our system more complex and ad
hoc, probably requiring numerous specialised kinds of reference capabilities. Thus we have traded some
expressive power in order to preserve safety and simplicity.

Purity
L42’s enforcement of reference and object capabilities statically guarantees that any method with only read
or imm parameters (including the receiver) is pure; we define pure as being deterministic and not mutating
existing memory. This holds because (1) the reachable object graph of the parameters (including this)
is only accessible as read (or imm), thus it cannot be mutated (2) if a capability object is in the reachable
object graph of any of the arguments (including the receiver), then it can only be accessed as read, preventing
calling any non-deterministic (capability) methods; (3) no other pre-existing objects are accessible (as L42
does not have global variables). In particular, this means that our invariant() methods are pure, since their
only parameter (the receiver) is read.

Rep Fields
Former work on L42 discusses “depending on how we expose the owned data, we can closely model both
owners-as-dominators[...] and owners-as-qualifiers[...]”[19], and “lent getter[s], a third variant”[19].

Those informal considerations have then influenced the L42 language design, bringing to the creation
of syntactic sugar and programming patterns to represent various kinds of capsule fields aimed to model
various forms of ownership. Under the hood, all those forms of capsule fields are just private mut fields with
some extra restrictions. Describing in the details those restrictions would be outside of the scope of this
paper.

Here we present a novel kind of encapsulated field, that we call a rep field. As for the various kinds of
L42 capsule fields, our new kind of field is also just a private mut fields with extra restrictions, enforcing
the following key property: the reachable object graph of a rep field o.f can only be mutated under the
control of a mut method of o, and during such mutation, o itself cannot be seen. This is similar to owner-
as-modifier [29, 30], where we could consider an object to be the ‘owner’ of all the mutable objects in the
reachable object graph of its rep fields, but with the extra restriction that the owner is unobservable during
mutation of those objects.

More preciselly, if a reference to an object in the reachable object graph of a rep field o.f is involved in
execution as mut, then: (1) no reference to o is involved in execution, (2) a call to a mut method for o is
present in a previous stack frame, and (3) mutable references to the reachable object graph of o.f are not
leaked out of such method execution, either as return values, exception values, or stored in the reachable
object graph of any parameter or any other field of the method’s receiver.

13If our protocol were extended to support polymorphic reference capabilities (as in Gordon et al.’s work [12]), we could allow
a reference with a polymorphic reference capability to be reachable from a rep field, provided that the state reachable from
such a reference cannot be read from the invariant method. This could be done by supporting a reference capability that
prevents reading state (such as the tag capability of Pony [10]), and requiring that such a polymorphic reference capability
be type checked as if it were tag. Outside the list however, if the polymorphic reference capability is known to be mut, the
elements could then be freely accessed and aliased, as the invariant would be guaranteed to not depend on them.
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To show how our rep fields ensure these properties, we first define some terminology: x.f is a field access,
x.f=e is a field update,14 a mut method with a field access on a rep field of this is a rep mutator. 15 Note
that a method performing a field update of a rep field (instead of a field access) is not called a rep mutator,
but it is just a normal method performing a field update. Rep mutators handle the more subtle case where
the fields of an object with invariant are not updated, but a mutation deep within their reachable object
graph may potentially break the invariant.

The following rules define our novel rep fields:

• A rep field can only be initialised/updated using the result of an expression with capsule type.

• A rep field access will return a:

– mut reference, when accessed on this within a rep mutator,
– read reference, when accessed on any other mut receiver,
– imm if the receiver is imm, read if the receiver is read, or capsule if the receiver is capsule. This

last case is safe since a capsule receiver object will then be garbage collectable, so we do not need
to preserve its invariant.

• A rep mutator must:

– use this exactly once: to access the rep field,
– have no mut or read parameters (except the mut receiver),
– not have a mut return type,
– not throw any checked exceptions16.

The above rules ensure that rep mutators control the mutation of the reachable object graph of rep fields,
and ensures our points (1), (2), and (3): o will not be in the reachable object graph of o.f and only a rep
mutator on o can see o.f as mut; this means that the only way to mutate the reachable object graph of o.f
is through such methods. The restriction on the parameter types of a rep mutator ensures that o will not
be reachable from any of the method’s arguments, nor can these arguments be made reachable through o.f ,
which would violate our point (3). If execution is (indirectly) in a rep mutator, then o is only used as the
receiver of the this.f expression in the rep mutator. Thus we can be sure that the reachable object graph
of o.f will only be mutated within a rep mutator, and only after the single use of o to access o.f . Since such
mutation could invalidate the invariant of o, we call the invariant() method at the end of the rep mutator
body; before o can be used again. Provided that the invariant is re-established before a rep mutator returns,
no invariant failure will be thrown, even if the invariant was temporarily broken during the body of the
method.17

The following example illustrates these properties of rep mutators:
class Foo {

rep Point p;
read method Bool invariant () {

return this.p.x < this.p.y;
}

14Thus a field update x.f=e is not a field access followed by an assignment.
15We could relax our protocol, so that a mut method that reads a rep field is not considered a rep mutator if the method

only needs to use the field’s value as read. This relaxation would merely be for convenience; it does not change expressivity as
one can write a getter of form read method read C m(){return this.f;} for a rep C f field, and then call this.m()
on a mut this.

16To allow rep mutators to leak checked exceptions, we would need to check the invariant when such exceptions are leaked.
However, this would make the runtime semantics of checked exceptions inconsistent with unchecked ones.

17That is, rep mutators pretend that this is linear by requiring it to be used exactly once to read the rep field. By burying
the only current access point to the rep field we can read it as mut and mutate it. The restrictions on parameter types and
return types ensure that when such reference goes out of scope, the only remaining reference allowing mutation is in the rep
field again. This is similar to the ideas of the Focus operation [3] and View-point adaptation [31].
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read method read Point getP () {
return this.p; // ok , not a rep mutator

}
mut method read Point baz( capsule Qux q) { // a rep mutator

mut Qux my_q = q; // Ok , q is used exactly once
mut Point my_p = this.p; // ok , single use of ‘this ’
my_p.x = my_q. compute_x (my_p ); // may break the invariant
// it is ok if the invariant does not hold , as ‘this ’ cannot be reachable
// from ‘my_q ’ or ‘my_p ’, this holds since ‘q’ is capsule , and so cannot
// alias ‘this ’; if ‘q’ were instead mut or read , this would not be guaranteed .
my_p.y = my_q. compute_y (my_p );
return my_p; // invariant check here; type checks as return type is read

}
}

In contrast, L42’s pre-existing capsule fields do not have our rep mutator restrictions, in particular,
other objects can mutate them, although storing references to them on the heap is highly restricted. These
properties are also weaker than those of capsule references: we do not need to prevent arbitrary read aliases
to the reachable object graph of a rep field, and we do allow arbitrary mut aliases to exist during the execution
of a rep mutator. In particular, our rules allow unrestricted read only access to our rep fields.

Runtime Monitoring
The language runtime will automatically perform calls to invariant(), if such a call returns false, an
unchecked exception will be thrown. Such calls are performed at the following points:

• After a constructor call, on the newly created object.

• After a field update, on the receiver.

• After a rep mutator method returns, on the receiver of the method18.

In Section 5, we show that these checks, together with our aforementioned restrictions, are sufficient to
ensure our guarantee that the invariants of all objects involved in execution hold.

Traditional Constructors and Subclassing
L42 constructors directly initialise all the fields using the parameters, and L42 does not provide traditional
subclassing. L42 does however provide subtyping similar to Java 7’s interfaces. This works naturally with
our invariant protocol. We can support traditional constructors as in Pony and Gordon et al.’s language,
by requiring that constructors only use this as the receiver of a field initialisation. Subclassing can be
supported by forcing that a subclass invariant method implicitly starts with a check that super.invariant()
returns true. We would also perform invariant checks at the end of new expressions, as happens in [32], and
not at the end of super(..) constructor calls.

4. Essential Language Features

Our invariant protocol relies on many different features and requirements. In this section we will show
examples of using our system, and how relaxing any of our requirements would break the soundness of our
protocol. In our examples and in L42, the reference capability imm is the default, and so it can be omitted.
Many verification approaches take advantage of the separation between primitive/value types and objects,
since the former are immutable and do not support reference equality. However, our approach works in a
pure OO setting without such a distinction. Hence we write all type names in BoldTitleCase to emphasise
this. To save space, we omit the bodies of constructors that simply initialise fields with the values of the
constructor’s parameters, but we show their signature in order to show any annotations.

First we consider Person: it has a single immutable (and non final) field name.

18The invariant is not checked if the call was terminated via an an unchecked exception, since strong exception safety
guarantees the object will be unreachable.
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class Person {
read method Bool invariant () { return !name. isEmpty (); }
private String name;// the default reference capability imm is applied here
read method String name () { return this.name; }
mut method Void name( String name) { this.name = name; }
Person ( String name) { this.name = name; }

}

The name field is not final: Persons can change state during their lifetime. The reachable object graphs of all
of a Person’s fields are immutable, but Persons themselves may be mutable. We enforce Person’s invariant by
generating checks on the result of calling this.invariant(): immediately after each field update, and at the
end of the constructor. Such checks are generated/injected, and not directly written by the programmer.
class Person { .. // Same as before

mut method String name( String name) {
this.name = name; // check after field update
if (! this. invariant ()) { throw new Error (...); }

}

Person ( String name) {
this.name = name; // check at end of constructor
if (! this. invariant ()) { throw new Error (...); }

}
}

We now show how if we were to relax (as in Rust), or even eliminate (as in Java), the support for reference
and object capabilities, or strong exception safety, the above checks would not be sufficient to enforce our
invariant protocol.

Unrestricted Access to Capability Objects?
Allowing invariant() methods to (indirectly) perform non-deterministic operations by creating new capabil-
ity objects or mutating existing ones would break our guarantee that (manually) calling invariant() always
returns true. Consider this use of person; where myPerson.invariant() may randomly return false:
class EvilString extends String {// INVALID EXAMPLE

@ Override read method Bool isEmpty () {
// Creates a new object capability out of thin air
return new Random (). bool (); }}

...
method mut Person createPersons ( String name) {

// we can not be sure that name is not an EvilString
mut Person schrodinger = new Person (name ); // exception here?
assert schrodinger . invariant (); // will this fail?
...}

Despite the code for Person.invariant() intuitively looking correct and deterministic (!name.isEmpty()),
the above call to it is not. Obviously this breaks any reasoning and would make our protocol unsound. In
particular, note how in the presence of dynamic class loading, we have no way of knowing what the type
of name could be. Since our system allows non-determinism only through object capabilities, and restricts
their creation, the above example is prevented.

Moreover, since our system allows non-determinism only through mut methods on object capabilities,
even if an object has a rep field referring to a “file” object, it would be unable to read such file during an
invariant, since a mut reference would be required, but only a read reference would be available.

Allowing Internal Mutation Through Back Doors?
Rust [33] and Javari [13] allow interior mutability: the reachable object graph of an ‘immutable’ object
can be mutated through back doors. Such back doors would allow invariant() methods to store and read
information about previous calls. The example class MagicCounter breaks determinism by remotely breaking
the invariant of person without any interaction with the person object itself:
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class MagicCounter {// INVALID EXAMPLE
Int counter = 0;
method Int incr (){ return unsafe { counter ++};} // using a backdoor

}
class NastyS extends String {..

MagicCounter c = new MagicCounter (0); // can be ‘imm ’ since it is ‘unsafe ’
@ Override read method Bool isEmpty (){ return this.c.incr ()!=2;}

}
...
NastyS name = new NastyS (); // the type system believes name ’s ROG is immutable
Person person = new Person (name ); // person is valid , counter =1
name.incr (); // counter == 2, person is now broken
person . invariant (); // returns false , counter == 3
person . invariant (); // returns false , counter == 4

Such back doors are usually motivated by performance reasons, however in [12] they discuss how a few
trusted language primitives can be used to perform caching and other needed optimisations, without the
need for back doors.

No Strong Exception Safety?
The ability to catch and recover from invariant failures allows programs to take corrective actions. Since
we represent invariant failures by throwing unchecked exceptions, programs can recover from them with a
conventional try–catch. Due to the guarantees of strong exception safety, any object that has been mutated
during a try block is now unreachable, as happens in alias burying [18]. This property ensures that an
object whose invariant fails will be unreachable after the invariant failure has been captured. If instead we
were to not enforce strong exception safety, an invalid object could be made reachable. The following code
is ill-typed since we try to mutate bob in a try-catch block that captures all unchecked exceptions; thus also
including invariant failures:
mut Person bob = new Person ("Bob");// INVALID EXAMPLE
// Catch and ignore invariant failure :
try { bob.name(""); } catch ( Error t) { }// bob mutated
assert bob. invariant (); // fails!

The following variant is instead well typed, since bob is now declared inside of the try and it is guaranteed
to be garbage collectable after the try is completed.
try { mut Person bob = new Person ("Bob"); bob.name(""); }
catch ( Error t) { }

Note how soundly catching exceptions like stack overflows or out of memory cannot be allowed in
invariant() methods, since they are not deterministically thrown. L42 allows catching them only as a
capability operation, which thus can’t be used inside an invariant.

Relaxing Restrictions on Rep Fields?
Rep fields allow expressing invariants over mutable object graphs. Consider managing the shipment of items,
where there is a maximum combined weight:
class ShippingList {

rep Items items;
read method Bool invariant (){ return this.items. weight () <=300; }
ShippingList ( capsule Items items) {

this.items = items;
if (! this. invariant ()){ throw Error (...); }// injected check

}
mut method Void addItem (Item item) {

this.items.add(item );
if (! this. invariant ()){ throw Error (...); }// injected check

}
}
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We inject calls to invariant() at the end of the constructor and the addItem(item) method. This is safe since
the items field is declared rep. Relaxing our system to allow a mut reference capability for the items field and
the corresponding constructor parameter would make the above checks insufficient: it would be possible for
external code with no knowledge of the ShippingList to mutate its items. In order to write correct library
code in mainstream languages like Java and C++, defensive cloning [34, 35] is needed. For performance
reasons, this is hardly done in practice and is a continuous source of bugs and unexpected behaviour.
mut Items items = ...; // INVALID EXAMPLE
mut ShippingList l = new ShippingList (items ); // l is valid
items. addItem (new HeavyItem ()); // l is now invalid !

If we were to allow x.items to be seen as mut, where x is not this, then even if the ShippingList has full
control of items at initialisation time, such control may be lost later, and code unaware of the ShippingList
could break it:
// INVALID EXAMPLE : l.items can be exposed as mut
mut ShippingList l = new ShippingList (new Items ()); // l is ok
mut Items evilAlias = l.items; // here l loses control
evilAlias . addItem (new HeavyItem ()); // now l is invalid !

Relaxing our requirements for rep mutators would break our protocol: if rep mutators could have a mut
return type the following would be accepted:
// INVALID EXAMPLE : rep mutator expose (c) return type is mut
mut method mut Items expose (C c) { return c.foo(this.items );}

Depending on dynamic dispatch, c.foo() may just be the identity function, thus we would get in the same
situation as the former example.

Allowing this to be used more than once would allow the following code, where this may be reachable
from f, thus f.hi() may observe an object that does not satisfying its invariant:
mut method Void multiThis (C c) {// INVALID EXAMPLE : two ‘this ’

read Foo f = c.foo(this );
this.items.add(new HeavyItem ());
f.hi (); }//‘this ’ could be observed here if it is in ROG(f)

In order to ensure that a second reference to this is not reachable through arguments to such methods, we
only allow imm and capsule parameters. Accepting a read parameter, as in the example below, would cause
the same problems as before, where f may contain a reference to this:
mut method Void addHeavy (read Foo f) {// INVALID EXAMPLE

this.items.add(new HeavyItem ());
f.hi (); }//‘this ’ could be observed here if it is in ROG(f)

...
mut ShippingList l = new ShippingList (new Items ());
read Foo f = new Foo(l);
l. addHeavy (f); // We pass another reference to ‘l’ through f

5. Formal Language Model

To model our system we need to formalise an imperative OO language with exceptions, non determinism
(modelling I/O), object capabilities, and type system support for reference capabilities and strong exception
safety. Formal models of the runtime semantics of such languages are simple, but defining and proving
the correctness of such a type system is quite complex, and indeed many such papers exist that have
already done this [7, 6, 12, 10, 8]. Thus we parameterise our language formalism, and assume we already
have an expressive and sound type system enforcing the properties we need, so that we can separate our
novel invariant protocol, from the non-novel reference capabilities. We clearly list in Appendix A the
requirements we make on such a type system, so that any language satisfying them can soundly support
our invariant protocol. In Appendix B we show an example type system, a restricted subset of L42, and
prove that it satisfies our requirements. Conceptually our approach can parametrically be applied to any
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type system supporting these requirements, for example you could extend our type system with additional
promotions or generics. To keep our small step reduction semantics as conventional as possible, we base
our formalism on Featherweight Java [36] [37, Chapter 19], which is a Turing-complete [38] minimalistic
subset of Java. As such, we model an OO language where receivers are always specified explicitly, and the
receivers of field accesses and updates in method bodies are always this; that is, all fields are instance-
private. Constructor declarations are not present explicitly, instead we assume they are all of the form
C(T1 x1, ..., Tn xn){this.f1 =x1;...;this.fn =xn}, for appropriate types T1, ..., Tn. Note that we do not model
variable updates or traditional subclassing, since this would make the proofs more involved without adding
any additional insight.

Notational Conventions
We use the following notational conventions:

• Class, method, parameter, and field names are denoted by C, m, x, and f , respectively.

• We use “vs” and “ ls” as metavariables denoting a sequence of form v1, ..., vn and l1, ..., ln, similarly with
other metavariables ending in “s”.

• We use “_” to stand for any single piece of syntax.

• Memory locations are denoted by l.

• We assume an implicit program/class table; we use the notation C.m to get the method declaration for
m within class C, similarly we use C.f to get the declaration of field f , and C.i to get the declaration
of the ith field.

• Memory, denoted by σ : l → C{ls}, is a finite map from locations, l, to annotated tuples, C{ls},
representing objects; here C is the class name and ls are the field values. We use the notation Cσ

l to
get the class name of l and σ[l.f = l′] to update a field of l, σ[l.f ] to access one. The notation σ, σ′

combines the two memories, and requires that dom(σ) is disjoint from dom(σ′).

• We assume a typing judgement of form σ; Γ ⊢ e : T , this says that the expression e has type T , where
the classes of any locations are stored in σ and the types of variables are stored in the environment
Γ : x → T .

• We allow the type system to impose any additional constraints it needs on method bodies. Our
example type system in Appendix B for example requires that the method bodies are well-typed and
only use capsule local variables once. However, our proofs in Appendix A do not assume any such
restrictions.

We encode Booleans as ordinary objects, in particular we assume:

• There is a Bool interface, a “Boolean” value is any instance of this interface.

• There is a True class that implements Bool, an instance of this class represents “true”.

• The True class has no fields, so it can be created with new True().

• The True class has a trivial invariant (i.e. its body is new True()).

• Any other implementation of Bool, such as a False class, represent “false”.

Other than the invariant method of True, we impose no requirements on the methods of the Bool interface
or its classes, in particular, they could be used to provide logical operations.19

19In particular, if statements can be supported using Church encoding: we would have a Bool.if method of form
read methodT if(T ifTrue, T ifFalse), for an appropriate type T . The body of True.if will then be ifTrue, and
the body of False.if will be ifFalse. In this way, x.if(t,f) will return t if x is “true” and b if it is “false”. To ensure that
t and f themselves are evaluated if and only if x is “true”, the Bool.if method could instead be passed objects with apply
methods, whose bodies will be t and f , respectively. If we added syntax sugar for lambdas, as in Java 8, we could then do
x.if(() -> t, () -> f).apply()
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e ::= x | new C(es) | this.f | this.f = e | e.m(es) expression
| e asµ | try {e} catch {e′}
| v | v.f | v.f = e | tryσ{e} catch {e′} | M(l; e; e′) runtime expression

v ::= µ l value
Ev ::= □ | new C(vs,Ev, es) | v.f =Ev | Ev.m(es) | v.m(vs,Ev, es) evaluation context

| Ev asµ | tryσ{Ev} catch {e} | M(l;Ev; e) | M(l; v;Ev)
E ::= □ | new C(es,E , es ′) | E.f | E.f = e | e.f =E | E.m(es) full context

| e.m(es,E , es ′) | E asµ | try {E} catch {e} | try {e} catch {E}
| tryσ{E} catch {e} | tryσ{e} catch {E} | M(l;E; e) | M(l; e;E)

CD ::= class C implements Cs {Fs;Ms} | interface C implements Cs {Ss} class declaration
F ::= κC f field
S ::= µ methodT m(T1 x1, ..., Tn xn) method signature
M ::= S e method
T ::= µC type
µ ::= mut | imm | read | capsule reference capability
κ ::= mut | imm | rep field kind
Er ::= Ev[new C(vs,□, vs ′)] | Ev[□.f ] | Ev[□.f = v] | Ev[v.f =□] redex context

| Ev[□.m(vs)] | Ev[v.m(vs,□, vs ′)] | Ev[□ asµ]

Figure 1: Grammar

To encode object capabilities and I/O, we assume a special location c of class Cap. This location can be used
in the main expression and would refer to an object with methods that behave non-deterministically, such
methods would model operations such as file reading/writing. In order to simplify our proof, we assume
that:

• Cap has no fields,

• instances of Cap cannot be created with a new expression,

• Cap’s invariant() method is defined to have a body of ‘new True()’, and

• mut methods on Cap (unlike all other methods) can have the same method name declared multiple
times, with identical signatures but different bodies. Such methods will model I/O, for example
reading a byte from a file could be modelled by having several different mut method imm Byte readByte()
implementations, each of which returns a different byte value, a call to such a method will then non-
deterministically reduce to one of these values.

We only model a single Cap capability class for simplicity, as modelling user-definable capability classes as
described in 2 is unnecessary for the soundness of our invariant protocol.

For simplicity, we do not formalise actual exception objects, rather we have expressions which are “error ”s,
these correspond to expressions which are currently ‘throwing’ an unchecked exception; in this way there is
no value associated with an error . Our L42 implementation instead allows arbitrary imm values to be thrown
as (unchecked) exceptions, formalising exceptions in such way would not cause any interesting variation of
our proofs.

Grammar
The grammar is defined in Figure 1.

We use µ for our reference capabilities, and κ for field kinds. We don’t model the preexisting L42 capsule
fields, but instead model our novel rep fields, which can only be initialised/updated with capsule values. If
capsule fields where added, they would not make our invariant protocol more interesting, as long as they
do not provide a backdoor to create improper capsule references.

We use v, of form µ l, to keep track of the reference capabilities in the runtime, as it allows multiple
references to the same location to co-exist with different reference capabilities; however µ’s are not stored
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in memory. The reduction rules do not change behaviour based on these µ’s, they are merely used by our
proofs to keep track of the guarantees enforced by the type system.

Our expressions (e), include variables (x), object creations (new C(es)), field accesses (this.f and v.f),
field updates (this.f = e and v.f = e), method calls (e.m(es)), and values (v). Note that these are sufficient
to model standard constructs, for example a sequencing “;” operator could be simulated by a method which
simply returns its last argument. The expressions with this will only occur in method bodies, at runtime
this will be substituted for a µ l.

The three other expressions are:

• as expressions (e asµ), these evaluate e and change the reference capability of the result to µ. This is
important for our proofs in Appendix A, were we require the type system to ensure certain properties
for all references with a given µ. The type system is then responsible for rejecting any as expression
that could violate this. For example, a mut l as read could be used to prevent l from being used for
further mutation, and a mut l as capsule (if accepted by the type system) will guarantee that l is
properly encapsulated . These as expressions are merely a proof device, they do not effect the runtime
behaviour, and as in L42, they could simply be inferred by the type system when it would be sound
to do so.

• Monitor expressions (M(l; e; e′)) represent our runtime injected invariant checks. The location l refers
to the object whose invariant is being checked, e represents the behaviour of the expression, and e′

is the invariant check, which will initially be (read l).invariant(). The body of the monitor, e, is
evaluated first, then the invariant check in e′ is evaluated. If e′ evaluates to an imm True (i.e. an
imm reference to an instance of True), then the whole monitor expression will return the value of e,
otherwise if it evaluates to a reference to a non-True value (i.e. an imm reference to an instance of
a class other than True), the monitor expression is an error , and evaluation will proceed with the
nearest enclosing catch block, if any. For example, assuming (read l).invariant() terminates, we
will have σ|M(l; new Foo(); (read l).invariant()) → σ, l′ 7→ Foo{}|M(l; l′; (read l).invariant()) →∗

σ′|M(l; l′;µ l′′), i.e. we first reduce new Foo() to a value, then we reduce (read l).invariant(). If
Cσ

l′′ = True, then the invariant check succeeded and so the monitor will reduce to the result of new Foo(),
i.e. σ|M(l; new Foo(); (read l).invariant()) →∗ σ′|l′; otherwise, the monitor expression M(l; l′;µ l′′)
will be stuck (it is an error), and the reduction will proceed to the catch block of the nearest enclosing
try–catch (if any).

• try–catch expressions (try {e} catch {e′}), which as in many other expression based languages20,
evaluate e, and if successful, return its result, otherwise if e is an error , evaluation will reduce to e′.
During reduction, try–catch expressions will be annotated as tryσ{e} catch {e′}, where σ is the state
of the memory before the body of the try block begins execution. This annotation has no effect on the
runtime, but is used by the proofs to model strong exception safety: objects in σ are not mutated by
the body of the try. Note that as mentioned before, this strong limitation is only needed for unchecked
exceptions, in particular, invariant failures. Our calculus only models unchecked exceptions/errors,
however L42 also supports checked exceptions, and try-catches over them impose no limits on object
mutation during the try. This is safe since checked exceptions can not leak out of invariant methods
or ref mutators: in both cases our protocol requires their throws clause to be empty. For example, we
could have σ|try {e} catch {e′} → σ|tryσ{e} catch {e′} →∗ σ, σ′|tryσ{error} catch {e′} → σ, σ′|e′ →∗

σ′′, σ′|v. Thus the body of the try (e) has not modified σ, but it may have created new objects, which
will be in σ′; the catch block on the other hand (e′) can freely mutate σ into σ′′. Note that the objects
that e created (i.e. those in σ′), will not be reachable in e′ (since σ has not been modified), i.e. an
implementation could garbage collect them upon entering the catch block.

Locations (l), annotated tries (tryσ{e} catch {e′}), and monitors M(l; e; e′) are runtime expressions:
they are not written by the programmer, instead they are introduced internally by our reduction rules.

20This differs from statement based languages like Java, were a try-catch, does not return a value. The expression-based
form can be translated to a call to a method whose body is “try {return e;} catch (Throwable t) {return e′;}”.
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We provide several expression contexts, E , Ev, and Er. The standard evaluation context [37, Chapter 19],
Ev, represents the left-to-right evaluation order, an Ev is like an e, but with a hole (□) in place of a sub-
expression, but all the expression to the left of the hole must already be fully evaluated. This is used to
model the standard left to right evaluation order: the hole denotes the location of the next sub-expression
that will be evaluated. We use the notation Ev[e] to fill in the hole, i.e. Ev[e] returns Ev but with the single
occurrence of □ replaced by e. For example, if Ev = □.m() then Ev[new C()] = new C().m().

The full expression context, E , is like an Ev, but nothing needs to have been evaluated yet, i.e. the hole
can occur in place of any sub-expression. The context Er is also like an Ev, but instead has a hole in an
argument to a redex (i.e. an expression that is about to be reduced). This captures our previously informal
notion: a value v is involved in execution if we have an Er[v]. For example, if Er = Ev[new C(v1,□, v3)],
then Er[v2] = Ev[new C(v1, v2, v3)], i.e. we are about to perform an operation (creating a new object) that
is involving the value v2.

We say that an e is an error if it represents an uncaught invariant failure, i.e. a runtime-injected invariant
check that has failed and is not enclosed in a try block:

error(σ, e) iff:
• e = Ev[M(l; v;µ l′)]

• Cσ
l′ ̸= True

• Ev is not of form E ′
v[tryσ

′
{E ′′

v} catch {_}]

This ensures that the body of a try block will only be an error if there is no inner try–catch that should
catch it instead.

The rest of our grammar is standard and follows Java, except that types (T ) contain a reference capability
(µ), and fields (F ) contain a field kind (κ).

Reference Capability Operations
We define the following properties of our reference capabilities and field kinds:

• µ ≤ µ′ indicates that a reference of capability µ can be used whenever one of capability µ′ is expected.
This defines a partial order:

– µ ≤ µ, for any µ
– imm ≤ read
– mut ≤ read
– capsule ≤ mut, capsule ≤ imm, and capsule ≤ read

• κ̃ denotes the reference capability that a field with kind κ requires when initialised/updated:
– r̃ep = capsule
– κ̃ = κ, otherwise (in which case κ is also of form µ)

• µ::κ denotes the reference capability that is returned when accessing a field with kind κ, on a receiver
with capability µ:

– µ::imm = imm
– µ::mut = µ::rep = µ

The ≤ notation and κ̃ notations are used later in Appendix A and Appendix B.

Well-Formedness Criteria
We additionally restrict the grammar with the following well-formedness criteria:

• invariant() methods must follow the requirements of Section 3, except that for simplicity method
calls on this are not allowed.21 This means that for every non-interface class C, C.invariant =
read method imm Bool invariant() e, where e can only use this as the receiver of an imm or rep field
access. Formally, this means that for all E where e = E [this], we have:

– E = E ′
[□.f ], for some E ′

– C.f = κ_ f

– κ ∈ {imm, rep}

21Such method calls could be inlined or rewritten to take the field values themselves as parameters.
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(new) σ|Ev[new C(_ l1, ...,_ ln)] → σ, l0 7→ C{l1, ..., ln}|Ev[M(l0; mut l0; (read l0).invariant())], where:
l0 = fresh(σ) and C ̸= True

(new true) σ|Ev[new True()] → σ, l0 7→ True{}|Ev[mut l0], where:
l0 = fresh(σ)

(access) σ|Ev[µ l.f ] → σ|Ev[µ
′ l′], where:

Cσ
l .f = κ_ f , µ′ = µ::κ, and l′ = σ[l.f ]

(update) σ|Ev[_ l.f = _ l′] → σ[l.f = l′]|Ev[M(l; mut l; (read l).invariant())]

(call) σ|Ev[_ l0.m(_ l1, ...,_ ln)] → σ|Ev[e
′ asµ′], where:

Cσ
l0
.m = µ0 methodµ′ _m(µ1 _x1, ..., µn _xn) e

e′ = e[this := µ0 l0, x1 := µ1 l1, ..., xn := µn ln]
if µ0 = mut then there are no f and E with Cσ

l0
.f = rep _ f and e = E [this.f ]

(call mutator) σ|Ev[_ l0.m(_ l1, ...,_ ln)] → σ|Ev[M(l0; e asµ′; (read l0).invariant())], where:
Cσ

l0
.m = mut methodµ′ _m(µ1 _x1, ..., µn _xn)E [this.f ]

Cσ
l0
.f = rep _ f

e = E [this.f ][this := mut l0, x1 := µ1 l1, ..., xn := µn ln]

(as) σ|Ev[_ l asµ] → σ|Ev[µ l]

(try enter) σ|Ev[try {e} catch {e′}] → σ|Ev[tryσ{e} catch {e′}]

(try ok) σ|Ev[tryσ
′
{v} catch {_}] → σ|Ev[v]

(try error) σ|Ev[tryσ
′
{e} catch {e′}] → σ|Ev[e

′], where error(σ, e)

(monitor exit) σ|Ev[M(l; v;µ l′)] → σ|Ev[v], where Cσ
l′ = True

Figure 2: Reduction rules
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• Rep mutators must also follow the requirements in Section 3, such methods must not use this, ex-
cept for the single access to the rep field, and they must not have mut or read parameters, or a
mut return type. Formally, this means that for any C, m, and f , if C.f = rep _ f and C.m =
mut methodµ′ _m(µ1 _ _, ..., µn _ _)E [this.f ]:

– this /∈ E
– µ1 /∈ {mut, read}, ..., µn /∈ {mut, read}
– µ′ ̸= mut

• We require that the method bodies do not contain runtime expressions. Formally, for all C0 and m with
C0.m = _ method _m(_ _, ...,_ _) e, e contains no l, M(_; _; _), or tryσ

′
{_} catch {_} expressions.

• We also assume some general sanity requirements: every C mentioned in the program or in any well
typed expression has a single corresponding class/interface definition; the Cs in an implements are
all names of interfaces; the C in a new C(es) expression denotes a class; the implements relationship
is acyclic; the fields of a class have unique names; methods within a class/interface (other than
mut methods in Cap) have unique names; and parameters of a method have unique names and are not
named this.

• For simplicity of the type-system and associated proof, we require that every method in the (indi-
rect) super-interfaces of a class be implemented with exactly the same signature, i.e. if we have a
class C implements _ {_;Ms}, and interface C ′ implements _ {Ss}, where C ′ is reachable through
the implements clauses starting from C, then for all S ∈ Ss, there is some e with S e ∈ Ms.

Reduction Rules
Our reduction rules are defined in Figure 2. We use the function fresh(σ) to return an arbitrary l such that
l /∈ dom(σ). The rules use Ev to ensure that the sub-expression to be reduced is the left-most unevaluated
one:

• new/new true creates a new object. new is used when creating a non-True object, it returns
a monitor expression that will check the new object’s invariant, and if that succeeds, return a mut
reference to the object. new true is for creating an instance of True, it simply returns a mut reference
to the new object, without checking its invariant. The separate new true rule is needed as the
invariant of True is itself defined to perform new True(), so using the new rule would cause an infinite
recursion. This is sound since manually calling invariant on True will return a True reference. Note
that although we do not define what fresh actually returns, since it is a function these reduction rules
are deterministic: l0 is uniquely defined for any given σ.

• access looks up the value of a field in the memory and returns it, annotated with the appropriate
reference capability (see above for the definition of µ::κ).

• update updates the value of a field, returning a monitor that re-checks the invariant of the receiver,
and if successful, will return the receiver of the update as mut. Note that this does not check that
the receiver of the field update has an appropriate reference capability, it is the responsibility of the
type-system to ensure that this rule is only applied to a mut or capsule receiver. For soundness, we
return a mut reference even when the receiver is capsule. Promotion can then be used to convert the
result to a capsule, provided the new field value is appropriately encapsulated.

• call/call mutator looks for a corresponding method definition in the receiver’s class, and reduces
to its body with parameters appropriately substituted. The parameters are substituted with the
reference capabilities of the method’s signature, not the capabilities at the call-site, this is used by
the proofs to show that further reductions will respect the capabilities in the method signature. We
wrap the body of the method call in an as expression to ensure that the returned µ is actually as the
method signature specified; for example, a method declared as returning a read might actually return
a mut, but the as expressions will soundly change it to a read, thus preventing it from being used for
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mutation. As with as expressions in general, the type system is required to ensure that this will not
break our reference capability guarantees in Appendix A. The call mutator rule is like call, but
is used when the method is a rep mutator (a mut method that accesses a rep field): it additionally
wraps the method body in a monitor expression that will re-check the invariant of the receiver once
the body of the method has finished reducing. Note that as Cap has no rep fields and can have multiple
definitions of the same method, the call rule allows for non-determinism, but only if the receiver is
of class Cap and the method is a mut method.

• as simply changes the reference capability to the one indicated. Note that our requirements on the
type-system, given in Appendix A, ensure that inappropriate promotions (e.g. imm to mut) will be
ill-typed.

• try enter will annotate a try–catch with the current memory state, before any reduction occurs
within the try part. In Appendix A, we require the type system to ensure strong exception safety:
that the objects in the saved σ are never modified. Note that the grammar for Ev prevents the body
of an unannotated try block from being reduced, thus ensuring that this rule is applied first.

• try ok simply returns the body of a try block once it has successfully reduced to a value. try error
on the other hand reduces to the body of the catch block if its try block is an error (an invariant
failure that is not enclosed by an inner try block). Note that the grammar for Ev prevents the body
of a catch block from being reduced, instead try error must be applied first; this ensures that the
body of a catch is only reduced if the try part has reduced to an error .

• monitor exit reduces a successful invariant check to the body of the monitor. If the invariant check
on the other hand has failed, i.e. has returned a non-True reference, it will be an error , and try
error will proceed to the nearest enclosing catch block.

Note that as with most OO languages, an expression e can always be reduced, unless: e is already a
value, e contains an uncaught invariant failure, or e attempts to perform an ill-defined operation (e.g. calling
a method that doesn’t exist). The latter case can be prevented by any standard sound OO type system.
However, invalid use of reference capabilities (e.g. having both an imm and mut reference to the same location)
does not cause reduction to get stuck, instead, in Appendix A we explicitly require that the type system
prevents such things from happening, which our example type system in Appendix B proves to be the case.

Statement of Soundness
We define a deterministic reduction arrow to mean that exactly one reduction is possible:

σ|e ⇒ σ′|e′ iff σ|e → σ′|e′, and ∀σ′′, e′′, σ|e → σ′′|e′′, implies σ′′|e′′ = σ′|e′

We say that an object is valid when calling its invariant() method would deterministically produce an
imm True in a finite number of steps, i.e. assuming the type system is sound, this means it does not evaluate
to a non-True reference, fail to terminate, or produce an error . We also require that evaluating invariant()
preserves existing memory, however new objects can be freely created and mutated:

valid(σ, l) iff σ|(read l).invariant() ⇒+ σ, σ′|imm l where Cσ,σ′

l = True.
To allow the invariant() method to be called on an invalid object, and access fields on such an objects, we
define the set of trusted execution steps as the call to invariant() itself, and any field accesses inside its
evaluation:

trusted(Er, l) iff, either:
• Er = Ev[M(l; _;□.invariant())], or
• Er = Ev[M(l; _;E ′

v[□.f ])].
The idea being that the Er is like an Ev but it has a hole where a reference can be, thus trusted(Er, l)

holds when the very next reduction we are about to perform is µ l.invariant() or µ l.f . As we discuss in our
proof of Soundness, any such µ l.f expression came from the body of the invariant() method itself, since l
can not occur in the ROG of any of its fields mentioned in the invariant() method.22

22Invariants only see imm and rep fields (as read), neither of which can alias the current object.
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We define a validState as one that was obtained by any number of reductions from a well typed initial
main expression and memory:

validState(σ, e) iff c 7→ Cap{}|e0 →∗ σ|e, for some e0 such that:
• c 7→ Cap{}; ∅ ⊢ e0 : T , for some T

• e0 contains no M(_; _; _), tryσ
′
{_} catch {_}, try {_} catch {_}, or _ asµ expressions

• ∀µ l ∈ e0, µ l = mut c
By restricting which initial expressions are well-typed, the type-system (such as the one presented in Ap-
pendix B) can ensure the required properties of our reference-capabilities (see Appendix A); any standard
OO type system can also be used to reject expressions that might try to perform an ill-defined reduction
(like reading a field that does not exist). The initial expression cannot contain any runtime expressions,
except for mut references to the single pre-existing Cap object. Note that as Cap has no fields and this is
not of form l, field accesses/updates in the initial main expression can never be reduced. To make the type
system and proofs presented in Appendix B simpler, we require that c can only be initially referenced as mut
and that there are no try–catch or as expressions in e0. This restriction does not effect expressivity, as you
can pass c to a method whose parameters have the desired reference capability, and whose body contains
the desired try–catch and/or as expressions.

Finally, we define what it means to soundly enforce our invariant protocol:
Theorem 1 (Soundness).

If validState(σ,Er[_ l]), then either valid(σ, l) or trusted(Er, l).
Except for the injected invariant checks (and fields they directly access), any redex in the execution of a
well typed program takes as input only valid objects. In particular, no method call (other than injected
invariant checks themselves) can see an object which is being checked for validity.

This is a very strong statement because valid(σ, l) requires the invariant of l to deterministically termi-
nate. Our setting does ensure termination of the invariant of any l that is now within a redex (as opposed to
an l that is on the heap, or is being monitored). This works because non terminating invariant() methods
would cause the monitor expression to never terminate. Thus, an l with a non terminating invariant() is
never involved in an untrusted redex. This works as invariants are deterministic computations that depend
only on the state reachable from l. In particular, if l is in a redex, a monitor expression must have terminated
after the object instantiation and after any updates to the state of l.

6. Case Studies

To perform compelling case studies, we used our system on several examples, including one designed to
be a worst case scenario for our approach. We also replicate many examples originally proposed by other
papers, so that not all the code examples come from us.

6.1. An interactive GUI
We start by presenting our GUI example; a program that interacts with the real world using I/O. It

demonstrates how to verify invariants over cyclic mutable object graphs. Our example is particularly relevant
since, as with most GUI frameworks, it uses the composite programming pattern; arguably one of the most
fundamental patterns in OO.

Our case study involves a GUI with containers (SafeMovables) and Buttons. The SafeMovable class has an
invariant to ensure that its children are graphically contained within it and do not overlap. The Buttons move
their SafeMovable when pressed. We have a Widget interface, which provides methods to get Widgets’ size and
position as well as children (a list of Widgets). Both SafeMovables and Buttons implement Widget. Crucially,
since the children of SafeMovable are stored in a list of Widgets it can contain other SafeMovables, and all
queries to their size and position are dynamically dispatched. Such queries are also used in SafeMovable’s
invariant. Here we show a simplified version23, where SafeMovable has just one Button and certain sizes and
positions are fixed. Note that Widgets is a class representing a mutable list of mut Widgets.

23The full version, written in L42, which uses a different syntax, is available in our artifact at http://l42.is/
InvariantArtifact.zip
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class SafeMovable implements Widget {
rep Box box; Int width = 300; Int height = 300;

@ Override read method Int left () { return this.box.l; }
@ Override read method Int top () { return this.box.t; }
@ Override read method Int width () { return this.width; }
@ Override read method Int height () { return this. height ; }
@ Override read method read Widgets children () { return this.box.c; }
@ Override mut method Void dispatch ( Event e) {

for ( Widget w:this.box.c) { w. dispatch (e); }}
read method Bool invariant () {.. /* presented later */ ..}
SafeMovable ( capsule Widgets c) { this.box = makeBox (c); }
static method capsule Box makeBox ( capsule Widgets c) {

mut Box b = new Box (5, 5, c);
b.c.add(new Button (0, 0, 10, 10, new MoveAction (b));
return b;// mut b is soundly promoted to capsule

}}
class Box { Int l; Int t; mut Widgets c; Box(Int l, Int t, mut Widgets c) {..} }
class MoveAction implements Action {

mut Box outer;
MoveAction (mut Box outer) { this.outer = outer; }
mut method Void process (Event e) { this.outer.l += 1; }

}
... // main expression
//#$ is a capability operation making a Gui object
Gui .#$(). display (new SafeMovable (...));

As you can see, Boxes encapsulate the state of the SafeMovables that can change over time: left, top, and
children. Also note how the reachable object graph of Box is cyclic: since the MoveActions inside Buttons
need a reference to the containing Box in order to move it. Even though the children of SafeMovables are
fully encapsulated, we can still easily dispatch events to them using dispatch(e). Once a Button receives an
Event with a matching ID, it will call its Action’s process(e) method.

Our example shows how to encode interactive GUI programs, where widgets may circularly reference
other widgets. In order to perform this case study we had to first implement a simple GUI Library in
L42. This library uses object capabilities to draw the widgets on screen, as well as fetch and dispatch
events. Importantly, neither our application, nor the underlying GUI library requires back doors, into either
reference or object capabilities.

The Invariant
SafeMovable is the only class in our GUI that has an invariant, our system automatically checks it in two
places: the end of its constructor and the end of its dispatch(e) method (which is a rep mutator). There
are no other checks inserted since we never do a direct field update on a SafeMovable. The code for the
invariant is just a couple of simple nested loops:24

read method Bool invariant () {
for( Widget w1 : this.box.c) {

if (! this. inside (w1)) { return false; }
for( Widget w2 : this.box.c) {

if(w1!=w2 && SafeMovable . overlap (w1 , w2 )){ return false; }
}

}
return true;

}

24We could make the code slightly more efficient by not comparing each pair of widgets twice. However, code efficiency is
not the priority here.
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Here SafeMovable.overlap is a static method that simply
checks that the bounds of the widgets don’t overlap. The
call to this.inside(w1) similarly checks that the widget is
not outside the bounds of this; this instance method call
is allowed as inside(w) only uses this to access its imm and
rep fields.

Our Experiment
As shown in the figure below, counting both SafeMovables
and Buttons, our main method creates 21 widgets: a top
level (green) SafeMovable without buttons, containing 4
(red, blue, and black) SafeMovables with 4 (grey) buttons
each. When a button is pressed it moves the containing
SafeMovable a small amount in the corresponding direction.
This set up is not overly complicated, the maximum nest-
ing level of Widgets is 5. Our main method automatically
presses each of the 16 buttons once. In L42, using our in-
variant protocol, this resulted in 77 calls to SafeMovable’s
invariant.

Comparison With Visible State Semantics
As an experiment, we set our implementation to generate invariant checks following the visible state seman-
tics approaches of D and Eiffel [39, 40], where the invariant of the receiver is instead checked at the start
and end of every public (in D) and qualified25 (in Eiffel) method call.

In our SafeMovable class, all methods are public, and all calls (outside the invariant) are qualified, thus
this difference is irrelevant. Neither protocol performs invariant checks on field accesses or updates, however
due to the ‘uniform access principle’ [40], Eiffel allows fields to directly implement methods, allowing the
width and height fields to directly implement Widget’s width() and height() methods. On the other hand
in D, one would have to write getter methods, which would perform invariant checks. When we ran our
test case following the D approach, the invariant() method was called 52, 734, 053 times, whereas the Eiffel
approach ‘only’ called it 14, 816, 207 times;26 in comparison our invariant protocol only performed 77 calls.
The number of checks is exponential in the depth of the GUI: the invariant of a SafeMovable will call the
width(), height(), left(), and top() methods of its children, which may themselves be SafeMovables, and
hence such calls may invoke further invariant checks. Note that width() and height() are simply getters for
fields, whereas the other two are non-trivial methods. Concluding, we have shown that when an invariant
check queries other objects with invariants the visible state semantics may cause an exponential explosion
in the number of checks.

Spec# Comparison
We also encoded our example in Spec#27; that relies on pack/unpack; also called inhale/exhale or the
Boogie methodology. In pack/unpack, an object’s invariant is checked only by the explicit pack operations.
In order for this to be sound, some form of aliasing and/or mutation control is necessary. Spec# uses a
theorem prover, together with source code annotations. Spec# can be used for full static verification, but it
conveniently allows invariant checks to be performed at runtime, whilst statically verifying aliasing, purity
and other similar standard properties. This allows us to closely compare our approach with Spec#.

As the back-end of the L42 GUI library is written in Java, we did not port it to Spec#, rather we just
simulated it, and don’t actually display a GUI in Spec#. We ran our code through the Spec# verifier
(powered by Boogie [41]), which only gave us 2 warnings28, because the invariant of SafeMovable was not

25That is, the receiver is not this.
26This difference is caused by Eiffel treating getters specially, and skipping invariant checks when calling a getter. Thus,

even ignoring getter methods, the visible state semantic would still run 14 millions of invariant checks.
27We compiled Spec# using the latest available source (from 19/9/2014).
28We used assume statements, equivalent to Java’s assert, to dynamically check array bounds. This aligns the code with
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known to hold at the end of its constructor and dispatch(e) method. Thus, like our system, Spec# checks
the invariant at those two points at runtime. Thus the code is equivalently verified in both Spec# and L42;
in particular it performed exactly the same number (77) of runtime invariant checks.

While the same numbers of checks are performed, we do not have the same guarantee provided by our
approach: Spec#/Boogie does not soundly handle the non-deterministic impact of I/O, thus it does not
properly prevent us from writing unsound invariants that may be non-deterministic. We also encoded our
GUI in Microsoft Code Contracts [42], whose unsound heuristic also calls the invariant 77 times. However
Code Contract does not enforce the encapsulation of children(), thus this approach is even less sound than
Spec#.

Note how both our L42 and Spec# code required us to use the box pattern for our SafeMovable, due
to the cyclic object graph caused by the Actions of Buttons needing to change their enclosing SafeMovable’s
position. We found it quite difficult to encode the GUI in Spec#, due to its unintuitive and rigid ownership
discipline. In particular we needed to use many more annotations, which were larger and had greater
variety. The following table shows the annotation burden, for the program that defines and displays the
SafeMovables and our GUI; as well as the library which defines Buttons, Widget, and event handling. We only
count constructs Spec# adds over C# as annotations, we also do not count annotations related to array
bounds or null checks:

Spec# Spec# L42 L42
program library program library

Total number of annotations 40 19 19 18
Tokens (except .,;(){}[] and whitespace) 106 34 19 18

Characters (with minimal whitespace) 619 207 74 60

To encode the GUI example in L42, the only annotations we needed were the 3 reference capabilities:
mut, read, and capsule (rep fields in the actual L42 language use the capsule keywords to minimise language
complexity); Our Spec# code requires purity, immutability, ownership, method pre/post-conditions and
method modification annotations. In addition, it requires the use of 4 different ownership functions including
explicit ownership assignments. In total we used 18 different kinds of annotations in Spec#. The table
presents token and character counts to compare against Spec#’s annotations, which can be quite long
and involved, whereas ours are just single keywords. Consider for example the Spec# pre-condition on
SafeMovable’s constructor:

requires Owner.Same(Owner.ElementProxy(children), children);
The Spec# code also required us to deviate from the code style shown in our simplified version: we could
not write a usable children() method in Widget that returns a list of children, instead we had to write
children_count() and children(int i) methods; we also needed to create a trivial class with a [Pure]
constructor (since Object’s one is not marked as such). In contrast, the only indirection we had to do in
L42 was creating Boxes by using an additional variable in a nested scope. This is needed to delineate scopes
for promotions. Based on these results, we believe our system is significantly simpler and easier to use in
comparison with Spec#, that is more verbose but supports a wider range of verification applications.

6.2. A Comparison of a Simple Example in Spec#
Suppose we have a Cage class which contains a Hamster; the Cage will move its Hamster along a path. We

would like to ensure that the Hamster does not deviate from the path. We can express this as the invariant
of Cage: the position of the Cage’s Hamster must be within the path (stored as a field of Cage). This example
is interesting since it relies on Lists and Points that are not designed with Hamster/Cages in mind.
class Point {

Double x; Double y; Point( Double x, Double y) {..}
@ Override read method Bool equals (read Object that) {

if (!( that instanceof Point )) { return false; }
Point p = ( Point)that;
return this.x == p.x && this.y == p.y; }}

L42, which also performs such checks at runtime.
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class Hamster { Point pos; Hamster ( Point pos) {..} }// pos is imm by default
class Cage {

rep Hamster h;
List <Point > path; // path is imm by default
Cage( capsule Hamster h, List <Point > path) {..}
read method Bool invariant () { return this.path. contains (this.h.pos ); }
mut method Void move () {

Int index = 1 + this.path. indexOf (this.pos ()));
this. moveTo (this.path.get(index % this.path.size ())); }

read method Point pos () { return this.h.pos; }
mut method Void moveTo ( Point p) { this.h.pos = p; }

}

The invariant() method on Cage simply verifies that the pos of this.h is within the this.path list. This
is accepted by our invariant protocol since path is an imm field (hence deeply immutable) and h is a rep field
(hence fully encapsulated). The path.contains call is accepted by our type system as it only needs read
access: it merely needs to be able to access each element of the list and call Point’s equal method, which
takes a read receiver and parameter. The move method actually moves the hamster along the path, but
to ensure that our restrictions on rep fields are respected we forwarded some of the behaviour to separate
methods: pos() which returns the position of h and moveTo(p) which updates the position of h. The pos
method is needed since move() is a mut method, and so any direct this.h access would cause it to be a rep
mutator, which would make the program erroneous as move() uses this multiple times. Similarly, we need
the moveTo(p) method to modify the reachable object graph of the h field, this must be done within a rep
mutator that uses this only once.

As our path and h fields are never themselves updated, the only point where the reachable object graph
of our Cage can mutate is in the moveTo(p) rep mutator, thus our invariant protocol will insert runtime
invariant checks only here and at the end of the constructor.

Note: since only Cage has an invariant, only the code of Cage needs to be handled carefully; allowing the
code for Point and Hamster to be unremarkable. Thus our verification approach is more self contained and
modular. This contrasts with Spec#: all code involved in verification needs to be designed with verification
in mind [43].

Comparison with Spec#
We now show our hamster example in the system most similar to ours, Spec#:
// Note: assume everything is ‘public ’
class Point { double x; double y; Point( double x, double y) {..}

[Pure] bool Equal( double x, double y) { return x == this.x && y == this.y; } }
class Hamster {[ Peer] Point pos; Hamster ([ Captured ] Point pos ){..} }
class Cage {

[Rep] Hamster h; [Rep , ElementsRep ] List <Point > path;
Cage ([ Captured ] Hamster h, [ Captured ] List <Point > path)

requires Owner .Same(Owner . ElementProxy (path), path ); {
this.h = h; this.path = path; base (); }

invariant exists {int i in (0 : this.path. Count );
this.path[i]. Equal (this.h.pos.x, this.h.pos.y) };

void Move () {
int i = 0;
while (i<path.Count && !path[i]. Equal(h.pos.x,h.pos.y)){ i++; }
expose (this) { this.h.pos = this.path[i%this.path. Count ]; }

}
}

In both this and our original version, we designed Point and Hamster in a general way, and not solely to
be used by classes with an invariant: thus Point is not an immutable class.

The Spec# approach uses ownership: the Rep attribute on the h and path fields means its value is owned
by the enclosing Cage, similarly the ElementsRep attribute on the path field means its elements are owned
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by the Cage. Conversely, in the Hamster class, the Peer annotation on the pos field means its value is owned
by the owner of the enclosing Hamster, thus if a Cage owns a Hamster, it also owns the Hamster’s pos. The
Captured annotations on the constructor parameters of Cage and Hamster means that the passed in values
must be un-owned and the body of the constructor may modify their owners (the owner is automatically
updated when the parameter is assigned to a Rep or Peer field ).

Though we don’t want either pos or path to ever mutate, Spec# currently has no way of enforcing that
an instance of a non-immutable class is itself immutable.29 In Spec#, an invariant() can only access fields
on owned or immutable objects, thus necessitating our use of the Peer and Rep annotations on the pos and
path fields.

Note that this prevents multiple Cages from sharing the same point instance in their path. Had we made
Point an immutable class, we would get no such restriction. A similar problem applies to our pos field:
the pos of Hamsters in different Cages cannot be the same Point instance. Note how if we consider being in
the reachable object graph of an object’s rep fields as being ‘owned’ by the object, our rep fields behave
like Spec#’s Rep fields; similarly, mut fields that are in the reachable object graph of a rep field behave like
Spec#’s Peer fields.

The expose(this) block is needed, since in Spec# in order to modify a field of an object (like this.h.pos),
we must first “expose” its owner (the Cage). During an expose block, Spec# will not assume the invariant
of the exposed object, but will ensure it is re-established at the end of the block. This is similar to our
concept of rep mutators (like our moveTo method above), however it is supported by adding an extra syntactic
construct (the expose block), which we avoid.

Finally, note the custom Equal(x,y) method on Point: this is needed since we can’t overload the usual
Object.Equals(other) method because it is marked as Reads(ReadsAttribute.Reads.Nothing), which requires
the method not read any fields, even those of its receiver. We resorted to making our own Equal(x,y) method.
Since it is called in Cage’s invariant, Spec# requires it to be annotated as Pure, this requires that it can only
read fields of objects owned by the receiver of the method, so a method [Pure] bool Equal(Point that) can
read the fields of this, but not the fields of that. Of course this would make the method unusable in Cage
since the Points we are comparing equality against do not own each other. As such, the simplest solution
is to just pass the fields of the other point to the method. Sadly this means we can no longer use List’s
Contains(elem) and IndexOf(elem) methods, rather we have to expand out their code manually.

Even with all the above annotations, we needed special care in creating Cages:
List <Point > pl = new List <Point >{ new Point (0,0), new Point (0 ,1)};
Owner. AssignSame (pl , Owner. ElementProxy (pl ));
Cage c = new Cage(new Hamster (new Point (0, 0)), pl);

In Spec#, objects start their life as un-owned, so each new instruction above returns an unowned object.
However when the Points are placed inside the pl list, Spec# loses track of this. Thus the AssignSame call
is needed to mark the elements of pl as still being unowned (since pl itself is unowned). Contrast this with
our system which requires no such operation; we can simply write:
Cage c=new Cage(new Hamster (new Point (0 ,0)) , List.of(new Point (0,0), new Point (0 ,1)));

In Spec#, we had to add 10 different annotations, of 8 different kinds, worth a total of 20 tokens. In
comparison, our approach requires only 8 simple keywords of 3 different kinds, for a total of 8 tokens.
However, we needed to write separate pos() and moveTo(p) methods.

6.3. A Worst Case for the Number of Invariant Checks
The following test case was designed to produce a worst case in the number of invariant checks. We have

a Family that (indirectly) contains a list of parents and children. The parents and children are of type
Person. Both Family and Person have an invariant, the invariant of Family depends on its contained Persons.

29There is a paper [44] that describes a simple solution to this problem: assign ownership of the object to a special predefined
‘freezer’ object, which never gives up mutation permission. However, this does not appear to have been implemented. This
would provide similar flexibility to the reference capability system we use, which allows an initially mutable object to be
promoted to immutable.
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Note how we created a Box class to hold the parents and children. Thanks to this pattern, the invariant
only needs to hold at the end of Family.processDay(dayOfYear), after all the parents and children have
been updated. Thus processDay(dayOfYear) is atomic: it updates all its contained Persons together. Had
we instead made the parents and children rep fields of Family, the invariant would be required to also hold
between modifying the two lists. This could cause semantic problems if, for example, a child was updated
before their parent.
class Person {

final String name;
Int daysLived ;
final Int birthday ;
Person ( String name , Int daysLived , Int birthday ) { .. }
mut method Void processDay (Int dayOfYear ) {

this. daysLived += 1;
if(this. birthday == dayOfYear ){ Console .print("Happy birthday "+this.name + "!");}

}
read method Bool invariant () {

return !this.name. equals ("") && this. daysLived >= 0
&& this. birthday >= 0 && this. birthday < 365;

}}
class Family {

static class Box {
mut List <Person > parents ;
mut List <Person > children ;
Box(mut List <Person > parents , mut List <Person > children ){..}
mut method Void processDay (Int dayOfYear ) {

for( Person c : this. children ) { c. processDay ( dayOfYear ); }
for( Person p : this. parents ) { p. processDay ( dayOfYear ); }

}
}
rep Box box;
Family ( capsule List <Person > ps , capsule List <Person > cs){ this.box=new Box(ps ,cs );}
mut method Void processDay (Int dayOfYear ) { this.box. processDay ( dayOfYear ); }
mut method Void addChild ( capsule Person child) { this.box. children .add(child ); }
read method Bool invariant () {

for ( Person p : this.box. parents ) {
for ( Person c : this.box. children ) {

if (p. daysLived <= c. daysLived ) { return false; }
}

}
return true;

}}

We have a simple test case that calls processDay(dayOfYear) on a Family 1,095 (3× 365) times.
// 2 parents (one 32, the other 34), and no children
var fam = new Family (List.of(new Person ("Bob", 11720 , 40),

new Person ("Alice", 12497 , 87)) , List.of ());

for (Int day = 0; day < 365; day ++) { fam. processDay (day ); } // Run for 1 year
for (Int day = 0; day < 365; day ++) { // The next year

fam. processDay (day );
if (day == 45) { fam. addChild (new Person ("Tim", 0, day )); }

}
for (Int day = 0; day < 365; day ++) { // The 3rd year

fam. processDay (day );
if (day == 340) { fam. addChild (new Person ("Diana", 0, day )); }

}
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The idea is that everything we do with the Family is a mutation; the fam.processDay calls also mutate
the contained Persons.

This is a worst case scenario for our approach compared to visible state semantics since it reduces our
advantages: our approach avoids invariant checks when objects are not mutated but in this example most
operations are mutations; similarly, our approach prevents the exponential explosion of nested invariant
checks when deep object graphs are involved, but in this example the object graph of fam is very shallow.

We ran this test case using several different languages: L42 (using our protocol) performs 4,000 checks,
D and Eiffel perform 7,995, and finally, Spec# performs only 1,104.

Our protocol performs a single invariant check at the end of each constructor, processDay(dayOfYear)
and addChild(child) call (for both Person and Family).

The visible state semantics of both D and Eiffel perform additional invariant checks at the beginning of
each call to processDay(dayOfYear) and addChild(child).

The results for Spec# are very interesting, since it performs fewer checks than L42. This is the case
since processDay(dayOfYear) in Person just does a simple field update, which in Spec# do not invoke runtime
invariant checks. Instead, Spec# tries to statically verify that the update cannot break the invariant; if it
is unable to verify this, it requires that the update be wrapped in an expose block, which will perform a
runtime invariant check.

Spec# relies on the absence of arithmetic overflow, and performs runtime checks to ensure this30, as
such the verifier concludes that the field increment in processDay(dayOfYear) cannot break the invariant.
Spec# is able to avoid some invariant checks in this case by relying on all arithmetic operations performing
runtime overflow checks; whereas integer arithmetic in L42 has the common wrap around semantics.

The annotations we had to add in the Spec# version31 were similar to our previous examples, however
since the fields of Person all have immutable classes/types, we only needed to add the invariant itself. In
order to implement the addChild(child) method we were forced to do a shallow clone of the new child (this
also caused a couple of extra runtime invariant checks). Unlike L42 however, we did not need to create a box
to hold the parents and children fields, instead we wrapped the body of the Family.processDay(dayOfYear)
method in an expose (this) block. In total we needed 16 annotations, worth a total of 45 tokens, this is
slightly worse than the code following our approach that we showed above, which has 14 annotations and
14 tokens.

6.4. Encoding Examples from Spec# Papers
There are many published papers about the pack/unpack methodology used by Spec#. To compare

against their expressiveness we will consider the three main ones that introduced their methodology and
extensions:

• Verification of Object-Oriented Programs with Invariants [3]: this paper introduces their methodology.
In their examples section (pages 41–47), they show how their methodology would work in a class
hierarchy with Reader and ArrayReader classes. The former represents something that reads characters,
whereas the latter is a concrete implementation that reads from an owned array. They extend this
further with a Lexer that owns a Reader, which it uses to read characters and parse them into tokens.
They also show an example of a FileList class that owns an array of file names, and a DirFileList
class that extends it with a stronger invariant. All of these examples can be represented in L4232. The
most interesting considerations are as follow:

– Their ArrayReader class has a relinquishReader() method that ‘unpacks’ the ArrayReader and
returns its owned array. The returned array can then be freely mutated and passed around
by other code. However, afterwards the ArrayReader will be ‘invalid’, and so one can only call
methods on it that do not require its invariant to hold. However, it may later be ‘packed’ again

30Runtime checks are enabled by a compilation option; when they fail, unchecked exceptions are thrown.
31The Spec# code is in the artifact.
32Our encodings are in the artifact.
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(after its invariant is checked). In contrast, our approach requires the invariant of all usable
objects to hold. We can still relinquish the array, but at the cost of making the ArrayReader
forever unreachable. This can be done by declaring relinquishReader() as a capsule method, this
works since our type modifier system guarantees that the receiver of such a method is not aliased,
and hence cannot be used again. Note that Spec# itself cannot represent the relinquishReader()
method at all, since it does not provide explicit pack and unpack operations, rather its expose
statement performs both an unpack and a pack, thus we cannot unpack an ArrayReader without
repacking it in the same method.

– Their DirFileList example inherits from a FileList, which has an invariant and a final method,
this is something their approach was specifically designed to handle. As L42 does not have
traditional subclassing, we are unable to express this concept fully, but L42 does have code reuse
via trait composition, in which case DirFileList can include the methods from FileList, and
they will automatically enforce the invariant of DirFileList.

• Object Invariants in Dynamic Contexts [45]: this paper shows how one can specify an invariant for a
doubly linked list of ints (here int is an immutable value type). Unlike our protocol however, it allows
the invariant of Node to refer to sibling Nodes which are not owned/encapsulated by itself, but rather
the enclosing List. Our protocol can verify such a linked list33 (since its elements are immutable),
however we have to specify the invariant inside the List class. We do not see this as a problem, as the
Node type is only supposed to be used as part of a List, thus this restriction does not impact users of
List.

• Friends Need a Bit More: Maintaining Invariants Over Shared State [28]: this paper shows how one
can verify invariants over interacting objects, where neither owns/contains the others. They have
multiple examples which utilise the ‘subject/observer’ pattern, where a ‘subject’ has some state that
an ‘observer’ wants to keep track of. In their Subject/View example, Views are created with references
to Subjects, and copies of their state. When a Subject’s state is modified, it calls a method on its
attached Views, notifying them of this update. The invariant is that a View’s copy of its Subject’s state
is up to date. Their Master/Clock example is similar, a Clock contains a reference to a Master, and
saves a copy of the Master’s time. The Master has a Tick method that increases its time, but unlike the
Subject/View example, the Clock is not notified. The invariant is that the Clock’s time is never ahead
of its Master’s. Our protocol is unable to verify these interactions, because the interacting objects are
not immutable or encapsulated by each other.

7. Patterns

In this section we show programming patterns that allow various kinds of invariants. Our goal is not to
verify existing code or patterns, but to create a simple system that allows soundly verifying the correctness
of data structures. In particular, as we show, in order to use our approach to ensure invariants, one has to
program in an uncommon and very defensive style.

The SubInvariant Pattern
We showed how the box pattern can be used to write invariants over cyclic mutable object graphs, the latter
also shows how a complex mutation can be done in an ‘atomic’ way, with a single invariant check. However
the box pattern is much more powerful.

Suppose we want to pass a temporarily ‘broken’ object to other code as well as perform multiple field
updates with a single invariant check. Instead of adding new features to the language, like an invalid
modifier (denoting an object whose invariant does not need to hold), and an expose statement like Spec#,
we can use a ‘box’ class and a rep mutator to the same effect:

33Our protocol allows for encoding this example, but to express the invariant we would need to use reference equality, which
the L42 language does not support.
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interface Person { mut method Bool accept (read Account a,read Transaction t); }
interface Transaction { mut method List <Transfer > compute (); }
// Here List <T> represents a list of immutable Ts.
class Transfer { Int money;

method Void execute (mut AccountBox that ){// Gain some money , or lose some money
if(this.money >0){ that. income += money; }
else{ that. expenses -= money; }

}
}
class AccountBox {

UInt income =0; UInt expenses =0;
read method Bool subInvariant (){ return this. income >= this. expenses ; }
//An ‘AccountBox ’ is like a ‘potentially invalid Account ’:
//we may observe income >= expenses

}
class Account {

rep AccountBox box; mut Person holder ;
read method Bool invariant (){ return this.box. subInvariant (); }
// ‘h’ could be aliased elsewhere in the program
Account (mut Person h){ this. holder =h; this.box=new AccountBox (); }
mut method Void transfer (mut Transaction ts){

if(this. holder . accept (this , ts )){ this. transferInner (ts. compute ()); }
}
// rep mutator , like an ‘expose (this)’ statement
private mut method Void transferInner (List <Transfer > ts){

mut AccountBox b = this.box;
for ( Transfer t : ts) { t. execute (b); }

}// check the invariant here
}

The idea here is that transfer(ts) will first check to see if the account holder wishes to accept the transaction,
it will then compute the full transaction (which could cache the result and/or do some I/O), and then execute
each transfer in the transaction. We specifically want to allow an individual Transfer to raise the expenses
field by more than the income, however we don’t want an entire Transaction to do this. Our rep mutator
(transferInner) allows this by behaving like a Spec# expose block: during its body (the for loop) we don’t
know or care if this.invariant() is true, but at the end it will be checked. For this to make sense, we make
Transfer.execute take an AccountBox instead of an Account: it cannot assume that the invariant of Account
holds, and it is allowed to modify the fields of that without needing to check it. Though rep mutators can
be used to perform batch operations like the above, they can only take immutable and capsule objects. This
means that they can perform no non-deterministic I/O (due to our object capabilities system), and other
externally accessible objects (such as a mut Transaction) cannot be mutated during such a batch operation.

As you can see, adding support for features like invalid and expose is unnecessary, and would likely
require making the type system significantly more complicated as well as burdening the language with more
core syntactic forms.

In particular, the above code demonstrates that our system can:

• Have useful objects that are not entirely encapsulated: the Person holder is a mut field; this is fine
since it is not mentioned in the invariant() method.

• Wrap normal methods over rep mutators: transfer is not a rep mutator, so it can use this multiple
times and take a mut parameter.

• Perform multiple state updates with only a single invariant check: the loop in transferInner(ts) can
perform multiple field updates of income and expenses, however the invariant() will only be checked
at the end of the loop.
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• Temporarily break an invariant: it is fine if during the for loop, expenses > income, provided that this
is fixed before the end of the loop.

• Pass the state of an ‘invalid’ object around, in a safe manner: an AccountBox contains the state of
Account, but not the invariant method. Note how programmers can use conventional private types to
control how such ‘invalid’ versions of objects are exposed in the public API, for example by declaring
AccountBox as a private nested class. In contrast, if invalid was a type system feature, then any user
defined type would intrinsically expose the existence of both variants in the public API.

Under our strict invariant protocol, the invariant holds for all reachable objects. The sub invariant
pattern allows to control when an object is required to be valid. Instead, other protocols strive to allow the
invariant to be observed broken in controlled conditions defined by the protocol itself.

The sub invariant pattern offers interesting guarantees: any object ‘a’ with a subInvariant() method
that is checked by the invariant() method of an object ‘b’ will respect its subInvariant() in all contexts
where ‘b’ is involved in execution. This is because whenever ‘b’ is involved in execution, its invariant holds.
Moreover, a’s subInvariant() can be observed as false only if a rep mutator of ‘b’ is currently active (that
is, being executed), or b is now garbage collectable. Thus, even when there is no reachable reference to b in
the current stack frame, if no rep mutator on b is active, a’s subInvariant() will hold.

In the former example, this means that if you can refer to an Account, you can be sure that its
income >= expenses; if you have an AccountBox then you can be sure that either income >= expenses or
a rep mutator of the corresponding Account object is currently active. This closely resembles some visible
state semantic protocols, aiming to ensure that either an object’s invariant holds, or one of its methods is
currently active.

Another interesting and natural application of the sub invariant pattern would be to support a version of
the GUI such that, when a Widget’s position is updated, the Widget can in turn update the coordinates of its
parent Widgets, in order to re-establish their subInvariants. This would also make the GUI follow the versions
of the composite pattern were objects have references to their ‘parent’ nodes. The main idea is to define an
interface HasSubInvariant that denotes Widgets with a subInvariant() method. Then, WidgetWithInvariant
is a decorator over a Widget; the invariant method of a WidgetWithInvariant checks the subInvariant() of
each contained widget.

We define SafeMovable as a Widget and HasSubInvariant. Since subInvariant() methods don’t have the
restrictions of invariant methods, it allows SafeMovable to be significantly simpler than the version shown
before in Section 6.1.
interface HasSubInvariant { read method Bool subInvariant (); }

class SafeMovable implements Widget , HasSubInvariant {
Int width = 300; Int height = 300;
Int left; Int top; // Here we do not use a box , thus all the state
mut Widgets c; // is in SafeMovable .
mut Widget parent ;//We add a parent field

@ Override read method Int left (){ return this.left; }
@ Override read method Int top (){ return this.top; }
@ Override read method Int width (){ return this.width; }
@ Override read method Int height (){ return this. height ; }
@ Override read method read Widgets children (){ return this.c; }
@ Override mut method Void dispatch ( Event e){

for(mut Widget w :this.c){ w. dispatch (e); }
}
@ Override read method Bool subInvariant (){ /* same of original GUI */ }

SafeMovable (mut Widget parent ,mut Widgets c){
this.c=c; // SafeMovable no longer has an invariant ,
this.left =5; //so we impose no restrictions on its constructor
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this.top =5;
this. parent = parent ;
c.add(new Button (0 ,0 ,10 ,10 , new MoveAction (this ));

}
}

class MoveAction implements Action {
mut SafeMovable o;
MoveAction (mut SafeMovable o){ this.o = o; }
mut method Void process (Event e){

this.o.left +=1;
Widget p = this.o. parent ;
... // mutate p to re - establish its subInvariant

}
}
class WidgetWithInvariant implements Widget {

rep Widget w;
@ Override read method Int left (){ return this.w.left; }
@ Override read method Int top (){ return this.w.top; }
@ Override read method Int width (){ return this.w.width; }
@ Override read method Int height (){ return this.w. height ; }
@ Override read method read Widgets children (){ return this.w.c; }
@ Override mut method Void dispatch ( Event e){ w. dispatch (e); }
@ Override read method Bool invariant (){ return wInvariant (w); }
static method Bool wInvariant (read Widget w){

for(read Widget wi:w. children ()){ if(! wInvariant (wi )){ return false; } }
// Check that the subInvariant of all of w’s descendants holds
if (!(w instanceof HasSubInvariant )){ return true; }
HasSubInvariant si = ( HasSubInvariant )w;
return si. subInvariant ();

}
WidgetWithInvariant ( capsule Widget w){ this.w = w; }

}
... // main expression
//#$ is a capability operation making a Gui object
mut Widget top=new WidgetWithInvariant (new SafeMovable (...))
Gui .#$(). display (top );

In this way, the method WidgetWithInvariant.dispatch() is the only rep mutator, hence the only invariant
checks will be at the end of WidgetWithInvariant’s constructor and dispatch methods.

Importantly, this allows the graph of widgets to be cyclic and for each to freely mutate each other, even if
such mutations (temporarily) violate their subInvariant’s. In this way a widget can access its parent (whose
subInvariant() may not hold) in order to re-establish it. Note that this trade off is logically unavoidable:
in order to manipulate a parent in order to fix it, the parent must be reachable, but by mutating a Widget’s
position, its parent may become invalid. Thus if Widgets were to encode their validity in their invariant()
methods they could not have access to their parents. Instead, by encoding their validity in a subInvariant()
method, they can access invalid widgets, but this comes at a cost: the programmer must reason as to when
Widgets are valid, as we described above.

The Transform Pattern
Recall the GUI case study from Section 6.1, where we had a Widget interface and a SafeMovable (with
an invariant) that implements Widget. Suppose we want to allow Widgets to be scaled, we could add mut
setters for width(), height(), left(), and top() in the Widget interface. However, if we also wish to scale its
children we have a problem, since Widget.children() returns a read Widgets, which does not allow mutation.
We could of course add a mut method zoom(w) to the Widget interface, however this does not scale if more
operations are desired. If instead Widget.children returned a mut Widgets, it would be difficult for Widget
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implementations, such as SafeMovable, to mention their children() in their invariant(). A simple and
practical solution would be to define a transform(t) method in Widget, and a Transformer interface like so:
interface Transformer <T> { capsule method Void apply(mut T elem ); }

interface Widget { ...
mut method Void top(Int that ); // setter for immutable data
// transformer for possibly encapsulated data
mut method read Void transform ( capsule Transformer <Widgets > t);

}
class SafeMovable implements Widget { ...

// A well typed rep mutator
mut method Void transform ( capsule Transformer <Widgets > t) {t.apply(this.box.c);}}

The transform method offers an expressive power similar to mut getters, but prevents Widgets from leaking
out.34 With a Transformer, a zoom(w) function could be simply written as:
static method Void zoom(mut Widget w) {

w. transform (ws -> { for (wi : ws) { zoom(wi); } });
w.width(w.width () / 2); ...; w.top(w.top () / 2);

}

In the context of reference capabilities, capsule lambdas/closures will only be allowed to capture imm
and capsule local variables. Note that the Transformer parameter to transform is capsule and the method
Trasformer.apply takes a capsule receiver. In particular, this means that transform will be able to call the
lambda at most once, and that those lambdas cannot be saved and passed to multiple calls to transform.
However, we could instead make transform take an imm Transformer, and make Transformer.apply be an imm
method. This would allow those lambdas to be freely copied and called multiple times, however they would
only be able to capture imm local variables.

Here, we assume lambdas, as in Java, are sugar for normal objects that implement an interface with a
single abstract method. As an example, we could use the following sound rules to determine what lambdas
are allowed: imm lambda objects implementing an interface with an imm method which only captures final
imm variables, mut lambdas implementing a mut method which only captures final imm and mut variables, and
capsule lambdas implementing a capsule method which only captures final imm and capsule variables.

Using Patterns Together: A General and Flexible Graph Class
Here we rely on all the patterns shown above to encode a general library for Graphs of Nodes. Users of this
library can define personalised kinds of nodes, with their own personalised sub invariant. The library will
ensure that no matter how the library is used, for any accessible Graph, each user defined sub invariant of
its Nodes holds. Note that those sub invariants are not restricted to the local state of a node; since they can
explore the state of all reachable nodes, they may even depend upon the whole graph.

The Nodes are guaranteed to be encapsulated by the Graph, however they can be arbitrarily modified by
user defined transformations using the transform pattern.
interface Transform <T >{ capsule method read T apply(mut Nodes nodes ); }

interface Node{
read method Bool subInvariant (read Nodes nodes)
mut method mut Nodes directConnections ()

}
class Nodes{// just an ordered set of nodes

mut method Void add(mut Node n){..}
read method Int indexOf (read Node n){..}
mut method Void remove (read Node n){..}

34Note how this kind of pattern solves a similar problem in ownership systems where an object cannot be modified except
under the control of the owner. In our example, this would correspond to the SafeMovable being the ‘owner’ of it’s ‘box.c’
field.
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mut method mut Node get(Int index ){..}
}
class Graph{

rep Nodes nodes; // box pattern
Graph ( capsule Nodes nodes ){..}
read method read Nodes getNodes (){ return this.nodes; }
<T> mut method read T transform ( capsule Transform <T> t){

mut Nodes ns=this.nodes;// rep mutator with a single use of ‘this ’
return t.apply(ns);// single call of the capsule lambda

}
read method Bool invariant (){

for(read Node n: this.nodes ){if (!n. subInvariant (this.nodes )){ return false ;}}
return true;

}
}

We now show how our Graph library allows the invariant of the various Nodes to be customised by the library
user, and arbitrary transformations can be performed on the Graphs. This is a generalisation of the example
proposed by [46](section 4.2) as one of the hardest problems when it comes to enforcing invariants.

Note how there are only a minimal set of operations defined in the above code, others can be freely
defined by the user code, as demonstrated below:
class MyNode {

mut Nodes directConnections ;
mut method mut Nodes directConnections (){ return this. directConnections ; }
MyNode (mut Nodes directConnections ){.. /* presented later */ ..}
read method Bool subInvariant (read Nodes nodes ){

/* any user defined condition on this or nodes */}
capsule method read MyNode addToGraph (mut Graph g){.. /* presented later */ ..}
read method Void connectWith (read Node other , mut Graph g){..}

}
...
mut Graph g = new Graph(new Nodes ());
read MyNode n1 = new MyNode (new Nodes ())). addToGraph (g);
read MyNode n2 = new MyNode (new Nodes ())). addToGraph (g);
// lets connect our two nodes
n1. connectWith (n2 ,g);

Here we define a MyNode class, where the subInvariant(nodes) can express any property over this and nodes,
such as properties over their direct connections, or any other reachable node.

We can define methods in MyNode to add our nodes to graphs and to connect them with other nodes. Note
that the method addToGraph(g) is marked as capsule: this ensures that the node is not in any other graph.
In contrast, the method connectWith(other, g) is marked as read, even though it is clearly intend to modify
the reachable object graph of this. It works by recovering a mut reference to this from the mut Graph.

These methods can be implemented like this:
read method Void connectWith (read Node other ,mut Graph g){

Int i1=g. getNodes (). indexOf (this );
Int i2=g. getNodes (). indexOf (other );
if(i1==-1 || i2 == -1){ throw /* error nodes not in g*/;}
g. transform (ns ->
{

mut Node n1=ns.get(i1);
mut Node n2=ns.get(i2);
n1. directConnections (). add(n2);

});
}
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capsule method read MyNode addToGraph (mut Graph g){
return g. transform (ns ->{
mut MyNode n1=this;// single use of capsule ‘this ’
ns.add(n1);
});

}

As you can see, both methods rely on the transform pattern.
These transformation operations are very general since they can access the mut Nodes of the Graph and

any rep or imm data from outside. Note how the body of the capsule lambda in connectWith(other,g), can
not capture the read this or the read other, but we get their (immutable) indexes and recover the concrete
objects from the mut Nodes ns object. In this way, we also obtain more useful mut references to those nodes.
On the other hand, note how in addToGraph(g) we use the reference to the capsule this within the lambda,
this allows the lambda to be safely typed as capsule, since there can be no other aliases to this, and the
this variable cannot be used again in the method.

8. Integration in L42

In the latest version of L42, invariants have been integrated with caching and automatic parallelism;
it would be out of this article’s scope to explain in detail this integration, but the overall idea is that
an invariant is seen as a Void @Cache.Now method. The language ensures that @Cache.Now methods are
recomputed whenever their result may change; any exceptions are propagated immediately, and are not
cached. The type-system requires that any method that could alter the result of a @Cache.Now method
(except via a field update) must be marked with @Cache.Clear and respect our rep mutator restrictions.
L42 requires an explicit @Cache.Clear so as to make it clear in the code that such methods has special
type-system restrictions. This is more general than invariant checking however, as Cache.Now methods can
return a meaningful result, and not simply success or exception. L42 also supports other kinds of cached
methods, which get computed in parallel when an instance of the corresponding class is created, or when
their result may be altered.

L42 libraries rely on a very expressive form of metaprogramming to generate a lot of boilerplate/re-
dundant code. In L42 many tasks can be either manually performed by writing code directly, or partially
automated by code generation. L42 allows writing class methods (similar to a static method in Java)
with appropriate parameters instead of invariants method and rep mutators. The bodies of such methods
don’t have special restrictions as they cannot see this, instead the meta-programming generates appropriate
instance methods, conforming to our restrictions, which call the user provided class methods.

Our restrictions are also checked by the type system, so even if the user manually writes these methods,
instead of relying on the metaprogramming, they still cannot break our invariant protocol.

To make this work more accessible to programmers familiar with Java/C#, we have shown our examples
in a more Java-like syntax. Here you can see our ShippingList example from Section 4 in the full L42
Syntax:
ShippingList = Data :{

capsule Items items
@ Cache .Now
class method Void invariant (read Items items) =

X[items. weight () <=300 Num]
@ Cache .Clear
class method Void addItem (mut Items items ,Item item) =

items.add(item)
}

In this example, the Data decorator generates a factory method, a mut method Void addItem(Item item)
and a lot of other utility methods, including equality and conversion to string. In particular, the current
concrete L42 syntax uses the capsule keyword to ensure various properties of a field. The language relies on
the presence of annotations or other specific methods to decide what restrictions to apply and properties to
ensure. In this case, the presence of the @Cache.Now annotation clarifies that the field capsule Items items
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is actually a rep field as discussed in our work. The @Cache.Now annotation causes the invariant method to
be automatically computed, and recomputed every time a @Cache.Clear method is called.

The X[...] notation used in invariant is an assert statement: it throws an unchecked exception if it’s
argument is false. Please refer to Forty2.is for more information.

9. Related Work

Reference Capabilities
We rely on a combination of reference capabilities supported by at least three languages/lines of research:
L42 [6, 7, 8, 9], Pony [10, 11, 47], and Gordon et al. [12]. They all support full/deep interpretation,
without back doors. Former works [48, 49, 50, 51, 52] (which eventually enabled the work of Gordon
et al.) do not consider promotion and infers uniqueness/isolation/immutability only when starting from
references that have been tracked with restrictive annotations along their whole lifetime. Other approaches
like Javari [13, 53] and Rust [33] provide back doors, which are not easily verifiable as being used properly.

Ownership [54, 16, 31] is a popular form of aliasing control often used as a building block for static
verification [55, 43]. However, ownership does not require the whole reachable object graph of an object to
be ‘owned’. This complicates restricting the data accessible by invariants.

Object Capabilities
In the literature, object capabilities are used to provide a wide range of guarantees, and many variations are
present. Object capabilities, in conjunction with reference capabilities, are able to enforce purity of code in
a modular way, without requiring the use of effects or monads. L42 and Gordon et al. use object capabilities
simply to reason about I/O and non-determinism. This approach is best exemplified by Joe-E [27], which
is a self-contained and minimalistic language using object capabilities (but not reference capabilities) over
a subset of Java in order to reason about determinism. However, in order for Joe-E to be a subset of Java,
they leverage a simplified model of immutability: immutable classes must be final and have only final fields
that refer to immutable classes. In Joe-E, every method that only takes instances of immutable classes is
pure. Thus their model would not allow the verification of purity for invariant methods of mutable objects.
In contrast our model has a more fine grained representation of mutability: it is reference-based instead of
class-based. Thanks to this crucial difference, in our work every method taking only read or imm references
as receivers and parameters is pure, regardless of their class type. In particular, we allow the parameter of
such a method to be mutated later on by other code.

Invariant Protocols
Invariants are a fundamental part of the design by contract methodology. Invariant protocols differ wildly
and can be unsound or complicated, particularly due to re-entrancy and aliasing [45, 56, 57].

While invariant protocols all check and assume the invariant of an object after its construction, they
handle invariants differently across object lifetimes. Popular approaches include:

• The invariants of objects in a steady state are known to hold: that is when execution is not inside
any of the objects’ public methods [5]. Invariants need to be constantly maintained between calls to
public methods.

• The invariant of the receiver before a public method call and at the end of every public method body
needs to be ensured. The invariant of the receiver at the beginning of a public method body and after
a public method call can be assumed [58, 56]. Some approaches ensure the invariant of the receiver
of the calling method, rather than the called method [59]. JML [60] relaxes these requirements for
helper methods, whose semantics are the same as if they were inlined.

• The same as above, but only for the bodies of ‘selectively exported’ (i.e. not instance-private) methods,
and only for ‘qualified’ (i.e. not this) calls [57].

• The invariant of an object is assumed only when a contract requires the object be ‘packed’. It is
checked after an explicit ‘pack’ operation, and objects can later be ‘unpacked’ [3].
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• Upon calling a method (a.k.a a function/subprogram), the invariant of each parameter (and part/field
of a parameter) must be shown to hold; upon returning from a method, the invariant of each parameter
(and their parts) must still hold, and the invariant of the return value (and their parts) must hold [61,
62]. As a relaxation, one approach only requires such invariants to hold if the method is declared
within the scope of the invariant’s declaration, but visible outside of it [63]. To enable encapsulation
of invariants, for any method call located within the scope of an invariant, but calling a method outside
this scope, the invariants of each of the call’s arguments (and their parts) must be shown to hold [64].

• The same as above, but an invariant may optionally be declared ‘strong’, requiring that it must hold
for every variable/parameter (and their parts) at every well-defined step of execution (a ‘sequence
point’) [61].

These different protocols can be deceivingly similar. Note that all, except the last, of those approaches fail
our strict requirements and allow for broken objects to be observed. Some approaches like JML suggest
verifying a simpler approach (that method calls preserve the invariant of the receiver) but assume a stronger
one (the invariant of every object, except this, holds).

Security and Scalability
Our approach allows verifying an object’s invariant independently of the execution context. This is in
contrast to the main strategy of static verification [65, 1, 66]: to verify a method, the system assumes
the contracts of other methods, and the content of those contracts is the starting point for their proof.
Thus, static verification proceeds like a mathematical proof: a program is valid if it is all correct, but a
single error invalidates all claims. This makes it hard to perform verification on large programs, or when
independently maintained third party libraries are involved. Static verification has more flexible and fine-
grained annotations and often relies on a fragile theorem prover as a backend.

To soundly verify code embedded in an untrusted environment, as in gradual typing [67, 68], it is possible
to consider a verified core and a runtime verified boundary. One can see our approach as an extremely
modularised version of such a system: every class is its own verified core, and the rest of the code could have
Byzantine behaviour. Our proofs show that every class that compiles/type checks is soundly handled by
our protocol, independently of the behaviour of code that uses such a class or any other surrounding code.

Our approach works both in a library setting and with the open world assumption. Consider for example
the work of Parkinson [69]: he verified a property of the Subject/Observer pattern. However, the proof relies
on (any override of) the Subject.register(Observer) method respecting its contract. Such assumption is
unrealistic in a real-world system with dynamic class loading, and could trivially be broken by a user-defined
EvilSubject: checking contracts at load time is impractical and is not done by any verification systems we
know of.

Static Verification
AutoProof [70] is a static verifier for Eiffel that also follows the Boogie methodology, but extends it with
semantic collaboration where objects keep track of their invariants’ dependencies using ghost state.

Dafny [1] is a language where all code is statically verified. It supports invariants with its {:autocontracts}
annotation, which treats a class’s Valid() function as the invariant and injects pre and post-conditions fol-
lowing visible state semantics. However it requires objects to be newly allocated (or cloned) before another
object’s invariant may depend on it. Dafny is also generally highly restrictive with its rules for mutation
and object construction, it also does not provide any means of performing non-deterministic I/O.

Spec# [66] is a language built on top of C#. It adds various annotations such as method contracts and
class invariants. It primarily follows the Boogie methodology [71] where (implicit) annotations are used to
specify and modify the owner of objects and whether their invariants are required to hold. Invariants can be
ownership based [3], where an invariant only depends on objects it owns; or visibility based [28, 72], where
an invariant may depend on objects it doesn’t own, provided that the class of such objects know about this
dependence. Unlike our approach, Spec# does not restrict the aliases that may exist for an object, rather it
restricts object mutation: an object cannot be modified if the invariant of its owner is required to hold. This
allows invariants to query owned mutable objects whose reachable object graph is not fully encapsulated.
However as we showed in Section 6.1, it can become much more difficult to work with and requires significant
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annotation, since merely having an alias to an object is insufficient to modify it or call its methods. Spec#
also works with existing .NET libraries by annotating them with contracts, however such annotations are
not verified. Spec#, like our approach, does perform runtime checks for invariants and throws unchecked
exceptions on failure. However Spec# does not allow soundly recovering from an invariant failure, since
catching unchecked exceptions in Spec# is intentionally unsound. [73]

Static verification of multi object invariants is a very difficult problem. Many of the modularity issues
discussed in “Modular invariants for layered object structures” [59] do not apply to our environment: by
checking the invariant at run time it is not a problem if we do not know the implementation we depends on,
making us more flexible. Using their terminology, our work would be encapsulation based and not visibility
based. However, our encapsulation strategies are much more flexible. Our box pattern can be used to
emulate many visibility based invariants, simply by putting the invariant into a box containing all involved
objects.

Specification Languages
Using a specification language based on the mathematical metalanguage and different from the programming
language’s semantics may seem attractive, since it can express uncomputable concepts, has no mutation or
non-determinism, and is often easier to formally reason about. However, a study [74] discovered that
developers expect short-circuit semantics and arithmetic exceptions in specification languages to follow the
semantics of the underlying language; thus for example 1/0 || 2>1 should not hold, while 2>1 || 1/0 should,
thanks to short circuiting. This study was influential enough to convince JML to change its interpretation
of logical expressions accordingly [75]. Dafny [1] uses a hybrid approach: it has mostly the same language
for both specification and execution. Specification (‘ghost’) contexts can use uncomputable constructs such
as universal quantification over infinite sets, whereas runtime contexts allow mutation, object allocation and
print statements. The semantics of shared constructs (such as short circuiting logic operators) is the same in
both contexts. Most runtime verification systems, such as ours, use a metacircular approach: specifications
are simply code in the underlying language. Since specifications are checked at runtime, they are unable to
verify uncomputable contracts.

Ensuring determinism in a non-functional language is challenging. Spec# recognizes the need for puri-
ty/determinism when method calls are allowed in contracts [76] ‘There are three main current approaches:
a) forbid the use of functions in specifications, b) allow only provably pure functions, or c) allow pro-
grammers free use of functions. The first approach is not scalable, the second overly restrictive and the
third unsound ’. They recognise that many tools unsoundly use option (c), such as AsmL [77]. Spec#
aims to follow (b) but only considers non-determinism caused by memory mutation, and allows other non
deterministic operations, such as I/O and random number generation. In Spec# the following verifies:
[Pure] bool uncertain() {return new Random().Next() % 2 == 0;}
And so assert uncertain() == uncertain(); also verifies, but randomly fails with an exception at runtime.
As you can see, failing to handle non-determinism jeopardises reasoning. A simpler and more restrictive
solution to these problems is to restrict ‘pure’ functions so that they can only read final fields and call other
pure functions. This is the approach used by [78]. One advantage of their approach is that invariants (which
must be ‘pure’) can read from a chain of final fields, even when they are contained in otherwise mutable
objects. However their approach completely prevents invariants from mutating newly allocated objects, thus
greatly restricting how computations can be performed.

Runtime Verification Tools
By looking to surveys [79, 80] and the extensive MOP project [81], it seems that most runtime verification
tools empower users to implement the kind of monitoring they see fit for their specific problem at hand.
This means that users are responsible for deciding, designing, and encoding both the logical properties and
the instrumentation criteria [81]. In the context of class invariants, this means the user defines the invariant
protocol and the soundness of such protocol is not checked by the tool.

In practice, this means that the logic, instrumentation, and implementation end up connected: a specific
instrumentation strategy is only good to test certain logic properties in certain applications. No guarantee is
given that the implemented instrumentation strategy is able to support the required logic in the monitored
application. Some of these tools are designed to support class invariants: for example InvTS [82] lets you
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write Python conditions that are verified on a set of Python objects, but the programmer needs to be able
to predict which objects are in need of being checked and to use a simple domain specific language to target
them. Hence if a programmer makes a mistake while using this domain specific language, invariant checking
will not be triggered. Some tools are intentionally unsound and just perform invariant checking following
some heuristic that is expected to catch most failures: such as jmlrac [58] and Microsoft Code Contracts [83].

Many works attempt to move out of the ‘runtime verification tool’ philosophy to ensure runtime verifica-
tion monitors work as expected, as for example the study of contracts as refinements of types [84]. However,
such work is only interested in pre and post-conditions, not invariants.

Our invariant protocol is much stricter than visible state semantics, and keeps the invariant under tight
control. Gopinathan et al.’s. [5] approach keeps a similar level of control: relying on powerful aspect-oriented
support, they detect any field update in the whole reachable object graph of any object, and check all the
invariants that such update may have violated. We agree with their criticism of visible state semantics,
where methods still have to assume that any object may be broken; in such case calling any public method
would trigger an error, but while the object is just passed around (and for example stored in collections),
the broken state will not be detected; Gopinathan et al. says “there are many instances where o’s invariant
is violated by the programmer inadvertently changing the state of p when o is in a steady state. Typically,
o and p are objects exposed by the API, and the programmer (who is the user of the API), unaware of the
dependency between o and p, calls a method of p in such a way that o’s invariant is violated. The fact
that the violation occurred is detected much later, when a method of o is called again, and it is difficult to
determine exactly where such violations occur.”

However, their approach addresses neither exceptions nor non-determinism caused by I/O, so their
soundness guarantee does not scale to programs using such features.

Their approach is very computationally intensive, but we think it is powerful enough that it could even
be used to roll back the very field update that caused the invariant to fail, making the object valid again.
We considered a rollback approach for our work, however rolling back a single field update is likely to be
completely unexpected, rather we should roll back more meaningful operations, similarly to what happens
with transactional memory, and so is likely to be very hard to support efficiently. Using reference capabilities
to enforce strong exception safety is a much simpler alternative, providing the same level of safety, albeit
being more restrictive.

Chaperones and impersonators [85] lifts the techniques of gradual typing [86, 67, 68] to work on general
purpose predicates, where values can be wrapped to ensure an invariant holds. This technique is very
powerful and can be used to enforce pre and post-conditions by wrapping function arguments and return
values. This technique however does not monitor the effects of aliasing, as such they may notice if a contract
has been broken, but not when or why. In addition, due to the difficulty of performing static analysis in
weakly typed languages, they need to inject runtime checking code around every user-facing operation.

10. Conclusion

In this paper we (1) identified language features that soundly support representation invariants in object-
oriented verification; (2) presented a full formalism for our approach with capabilities that is proved to
soundly guarantee that all objects involved in execution are valid; (3) conducted extensive case studies
showing that we require orders of magnitude fewer runtime checks than visible state semantics and approx-
imately 31% fewer annotations (with 3 1/2 times fewer tokens)35 than equivalent versions in Spec#. We
hope that as a result of this work, the software verification community will make more use of the advanced
general purpose language features, such as capabilities, appearing in modern languages to achieve its goals.

Our approach follows the principles of offensive programming [87] where no attempt to fix or recover
an invalid object is performed. Failures (unchecked exceptions) are raised close to their cause: at the
end of constructors creating invalid objects and immediately after field updates and instance methods that
invalidate their receivers.

35Calculated by combining the counts from our GUI, Hamster, and Family case studies.
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Our work builds on a specific form of reference and object capabilities, whose popularity is growing, and
we expect future languages to support some variations of these. Crucially, any language already designed
with such a support can also support our invariant protocol with minimal added complexity.
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A. Invariant Protocol Proof and Type System Requirements

As previously discussed, we provide a set of requirements that the type system needs to ensure, and prove
the soundness of our invariant protocol over these, in this way we are parametric over the concrete type
system. In Appendix B, we present an example type system and prove that it satisfies these requirements.

Auxiliary Definitions
To express our type system assumptions, we first need some auxiliary definitions.

First, we inductively define the set of objects in the reachable object graph (ROG) of a location l:
l′ ∈ ROG(σ, l) iff:
• l′ = l, or
• ∃f such that l′ ∈ ROG(σ, σ[l.f ])

We define the MROG of an l to be the locations reachable from l by traversing through any number of
mut and rep fields:

l′ ∈ MROG(σ, l) iff:
• l′ = l, or
• ∃f such that Cσ

l .f = κ_ f , κ ∈ {mut, rep}, and l′ ∈ MROG(σ, σ[l.f ])
Thus the MROG of l are the objects that could be mutated via a reference to l.

We define what it means for an l to be reachable from an expression or context:
• reachable(σ, e, l) iff ∃l′ ∈ e such that l ∈ ROG(σ, l′)

• reachable(σ,E , l) iff ∃l′ ∈ E such that l ∈ ROG(σ, l′)

We now define what it means for an object to be immutable: it is in the ROG of an imm reference or a
reachable imm field:

immutable(σ, e, l) iff ∃l′ such that:
• imm l′ ∈ e, and l ∈ ROG(σ, l′), or
• reachable(σ, e, l′), Cσ

l′.f = imm _ f , and l ∈ ROG(σ, σ[l′.f ]), for some f

Now we can define what it means for an l to be mutatable36 by an expression e: something reachable
from l can also be reached by using a mut or capsule reference in e, and traversing through any number of
mut or rep fields:

mutatable(σ, e, l) iff ∃l′, l′′ such that:
• l′ ∈ ROG(σ, l),
• µ l′′ ∈ e with µ ∈ {mut, capsule}, and
• l′ ∈ MROG(σ, l′′).

36We use the term mutatable and not ‘mutable’ as an object might be neither mutatable nor immutable, e.g. if there are only
read references to it.
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The idea is that e could mutate something reachable from l: by using l′′ to get a mut reference to l′, and then
performing a field update on it; the new field value for l′ would then be observable through l. In particular,
we will require the type system to ensure that e can only mutate state observable from l if l is mutatable.

Finally, we model the encapsulated property of capsule references:
encapsulated(σ,E , l) iff ∀l′ ∈ ROG(σ, l), if mutatable(σ,E [capsule l], l′), then not reachable(σ,E , l′).

That is, a location l found in a context E is encapsulated if all mutatable objects in its ROG would be
unreachable with that single use of l removed. That single use of l is the connection preventing those
mutatable objects from being garbage collectable.

Type System Requirements
As we do not want to require a specific concrete type system, we instead assume some properties about the
expressions that it admits. Rather than requiring each expression during reduction to be well-typed, we
instead let the type-system impose restrictions on method bodies, and type-check the initial expression, we
then require properties on all future memories and expressions (i.e. validStates). In Appendix B we show
such a type-system and prove it satisfies these requirements, but these requirements do not hold for arbitrary
well-typed σ|e pairs, only for validStates. This allows the type-system to be simpler, in particular, as the
initial main expression can only have mut references to c (an object with no fields), the type-system does
not need to check that the heap structure and reference capabilities in the main expressions are consistent.

First we require that fields and methods are only given values with the correct reference capabilities,
i.e. the field initialisers of new expressions, the right hand sides of update expressions, and the receiver and
parameters of method calls have the capabilities required by the field declarations/method signatures:
Requirement 1 (Type Consistency).

1. If validState(E [new C(µ1 _, ..., µn _)]), then:
• there is a class C implements _ {Fs;_},

• Fs = κ1 _ _, ..., κn _ _, and

• µ1 ≤ κ̃1, ..., µn ≤ κ̃n.
2. If validState(E [_ l.f =µ_]), then:

• Cσ
l .f = κ_ f , and

• µ ≤ κ̃.
3. If validState(E [µ0 l.m(µ1 _, ..., µn _)]), then:

• Cσ
l .m = µ′

0 method _m(µ′
1 _ _, ..., µ′

n _ _) _, and
• µ0 ≤ µ′

0, ..., µn ≤ µ′
n.

This requirement also ensure that objects are created with the appropriate number of fields, and that fields
and methods that are accessed/updated/called actually exist.

Now we define formal properties about our reference capabilities, thus giving them meaning. First we
require that an immutable object can not also be mutatable: i.e. if an object is reachable from an imm
reference or field, then no part of its ROG can be reached by starting at a mut or capsule reference, and
then traversing through mut and rep fields:
Requirement 2 (Imm Consistency).

If validState(σ,E [e]) and immutable(σ, e, l), then not mutatable(σ, e, l).
Thus e cannot use field accesses to obtain a mut or capsule reference to anything reachable from an immutable
l. Note that this does not prevent promotion from a mut to an imm: an as expression can change a reference
from mut to imm, provided that in the new state there are no longer any mut references to the ROG of l.
Note that from the definition of mutatable and immutable, it follows that if l is immutable in any e, then it
is immutable in E [e], and not mutatable in any e′ ∈ E [e].
We require that if something was not mutatable, it remains that way:
Requirement 3 (Mut Consistency).

If validState(σ,E [e]), l ∈ dom(σ), not mutatable(σ, e, l), and σ|e →∗ σ′|e′, then not mutatable(σ′, e′, l).
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Note that this holds even if l is mutatable through E , thus an as expression cannot change a read or imm
reference to mut, as the associated location will not be mutatable within the body of the as expression, even
if there are mut references to the same object outside the as.

We require that any capsule reference is encapsulated , i.e. that no mutatable part of its ROG is reachable
through any other reference:
Requirement 4 (Capsule Consistency).

If validState(σ,E [capsule l]), then encapsulated(σ,E , l).
As all objects are created as mut, the only way to actually get a capsule reference is via an as expression.
As our reduction rules impose no constraints on such expressions, the type-system must ensure that it only
accepts a as capsule expression if it is guaranteed to return an encapsulated reference. Note that a specific
type system’s idea of “capsuleness” may in fact be stronger then encapsulated , but encapsulated is sufficient
for our invariant protocol.

We require that field updates are only performed on mut/capsule receivers:
Requirement 5 (Mut Update).

If validState(E [µ_._ = _]), then µ ≤ mut.

Finally we require strong exception safety: the body of a try block does not mutate objects that existed
before the enclosing try–catch began executing and are reachable outside the try block:
Requirement 6 (Strong Exception Safety).

If validState(σ′,Ev[tryσ{e} catch {e′}]), then ∀l ∈ dom(σ), if reachable(σ,Ev[e
′], l), then σ(l) = σ′(l).

Note that this strong requirement only needs to hold because our try–catch can catch invariant failures:
in L42, try–catch’s that catch checked exceptions do not need this restriction. Note that as our reduction
rules never modify the body of a catch, it follows that if validState(σ′,Ev[tryσ{_} catch {e}]), then for any
l ∈ dom(σ′), if l /∈ dom(σ), then l is not reachable in Ev[e].

Useful Lemmas
First we prove a few useful lemmas about the properties of references in our language.

By the definition of validState and the reduction rules themselves, we can show that the main expression
and heap never contain dangling references:
Lemma 1 (No Dangling).

If validState(σ, e) then:
• ∀l ∈ e, l ∈ dom(σ), and
• ∀l ∈ dom(σ), if σ(l) = C{ls} then {ls} ⊆ dom(σ).

Proof. The proof is by definition of validState, and induction on the number of reductions since the initial
memory and main-expression. In the base case, by definition of validState, the only l in the main-expression
and memory is c, which is defined in the memory. In the inductive case, each reduction rule only introduces
ls into the memory or main-expression that were either already there, or in the case of new/new true,
that are simultaneously added to the dom of the memory. As a simple corollary of this, we have that if
l ∈ dom(σ), then ROG(σ, l) ⊆ dom(σ), similarly with MROG .

Similarly, we show that once an l becomes un-reachable, it remains that way:
Lemma 2 (Lost Forever).

If validState(σ,E [e]), and σ|e →∗ σ′|e′, then
∀l ∈ dom(σ), if not reachable(σ, e, l), then not reachable(σ′, e′, l).

Proof. The proof follows from the definition of validState and induction on the number of reductions since
the initial memory and main-expression, and the fact that each reduction either does not introduce an l into
the main expression or heap, or only introduces ls that were already reachable (in the case of update and
access), or only introduces an l /∈ dom(σ) (in the case of new/new true).
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We show that a sub-expression can mutate an object only if it is mutatable:
Lemma 3 (Non-Mutating).

If validState(σ,E [e]), l ∈ dom(σ), not mutatable(σ, e, l), and σ|e →∗ σ′|e′, then σ′(l) = σ(l).
Proof. By No Dangling, l is always in the dom of memory, so by Mut Consistency, l never becomes mutatable,
and so we never obtain a mut or capsule reference to it, thus by Mut Update, we never update the fields of
l, and there are no reduction rules that remove from σ.

We can use our object capability discipline (described in Section 5) to prove that the invariant() method
is deterministic and does not mutate existing memory:
Lemma 4 (Determinism).

If validState(σ,E [(read l).invariant()]) and σ|(read l).invariant() →n σ′|e′, for some n ≥ 0, then:
• σ ⊆ σ′, and
• σ|(read l).invariant() ⇒n σ′|e′.

Proof. As the only reference in (read l).invariant() is read l, it follows from the definition of mutatable,
that there is no l′ with mutatable(σ, (read l).invariant(), l′), thus by Mutatatable Update we have that for
all l ∈ dom(σ), σ(l) = σ(l′), i.e. σ ⊆ σ′

We show the second part by induction on n: if n = 0, then no reduction was performed, e′ =
(read l).invariant(), and it trivially holds that σ|(read l).invariant() ⇒0 σ|(read l).invariant(). In the
inductive case, we have some σ′′ and e ′′ with σ|(read l).invariant() →n−1 σ′′|e′′ → σ′|e′, and assume our
inductive hypothesis that σ|(read l).invariant() ⇒n−1 σ′′|e′′. As c is not mutatable in (read l).invariant(),
by Mut Consistency, mut c /∈ e′′ and capsule c /∈ e′′. Since, by definition, there are never any other in-
stances of Cap, it follows from Type Consistency that the reduction σ′′|e ′′ → σ′|e′ was not due to call/call
mutator reducing a call to a mut method of Cap. As all other methods are uniquely defined, the re-
duction must have been deterministic, i.e. σ′′|e ′′ ⇒ σ′|e′, and so by the inductive hypothesis, we have
σ|(read l).invariant() ⇒n σ′′|e′′.

Rep Field Soundness
Now we define and prove important properties about our novel rep fields. We first start with a few core
auxiliary definitions. To simplify the notation, we define the repFields of an l to be the set of rep field names
for l:

repFields(σ, l) = {f where Cσ
l .f = rep _ f}

We say that an l and f is circular if l is reachable from l.f :
circular(σ, l, f) iff l ∈ ROG(σ, σ[l.f ]).

We say that an l is repCircular if any its rep fields are circular :
∃f ∈ repFields(σ, l) such that circular(σ, l, f).

We use σ \ l to remove the location l, thus (σ, l 7→ C{ls}) \ l = σ.

We say that an l and f is confined if l.f is not mutatable without passing through l:
confined(σ, l, f) iff not mutatable(σ \ l, e, σ[l.f ]).

We say that an l is repConfined if each of its rep fields are confined :
∀f ∈ repFields(σ, l) we have confined(σ, l, f).

We say that an l is repMutating if we are in a monitor for l which must have been introduced by call
mutator:

repMutating(σ, e, l) iff e = E [M(l; e′; _)], with e′ ̸= mut l.

Finally we say that l is headNotObservable if we are in a monitor introduced for a call to a rep mutator, and
l is not reachable from inside this monitor, except perhaps through a single rep field access:

headNotObservable(σ, e, l) iff e = Ev[M(l; e′; _)], and either:
• not reachable(σ, e′, l), or
• e′ = E [mut l.f ], f ∈ repFields(σ, l), and not reachable(σ,E , l)
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Now we formally state the core properties of our rep fields (informally described in Section 3):
Theorem 2 (Rep Field Soundness).

If validState(σ, e) then ∀l with reachable(σ, e, l), we have:
• not repCircular(σ, l, f), and
• either:

– repConfined(σ, l) and not repMutating(σ, e, l), or
– headNotObservable(σ, e, l).

That is, for every reachable object l: l is not reachable through any of its rep fields, and either we are in a
rep mutator for l and l is not observable (except perhaps through a single rep field access), or we are not
repMutating l, and each of ls rep fields are confined . Proof. By validState we have c 7→ Cap{}|e0 →m σ|e,
so we proceed by induction on m, the number of reductions. The base case when m = 0 is trivial, since Cap
has no rep fields and the initial main expression e0 cannot contain monitors.

In the inductive case, where m > 0, we have σ0|e0 → ... → σm−1|em−1 → σ|e, for some σ0, ..., σm−1 and
e0, ..., em−1, where σ0|e0 is a valid initial memory and expression. Our inductive hypothesis is then that the
conclusion of our theorem holds for each σi|ei, for i ∈ [0,m− 1]. We then proceed by cases on the reduction
rule applied, and prove the theorems conclusion for σ|e:

1. (new/new true) σ′|Ev[new C(µ1 l1, ..., µn ln)] → σ|Ev[e
′], where σ = σ′, l0 7→ C{l1, ..., ln},

and by Type Cosnsistency, we have class C implements _ {κ1 _ f1, ..., κn _ fn;}.
(a) We have that l0 is not repCircular : by No Dangling, we have that ∀l′ ∈ dom(σ′), ROG(σ′, l′) ⊆

dom(σ′). By our notational conventions for “,”, it follows that l0 /∈ dom(σ′). Now consider each i ∈
[1, n], since the pre-existing σ′ was not modified, it follows that ROG(σ′, li) = ROG(σ, σ[l0.fi]).
By No Dangling we have that ROG(σ, σ[l0.fi]) ⊆ dom(σ), and so l0 /∈ ROG(σ, σ[l0.fi]), thus each
l0.fi is not circular .

(b) Ever reachable l′ ̸= l0 is not repCircular : Since reduction didn’t modify the fields of any pre-
existing l′, by the inductive hypothesis, we have that l′ is still not repCircular .

(c) The new l0 is repConfined and not repMutating :
• Consider each i ∈ [1, n] with κi = rep. By Type Consistency and Capsule Consistency, li

was encapsulated and so ROG(σ′, li) cannot be mutatable from Ev. Thus, we don’t have
mutatable(σ \ l0,Ev[e

′], li), and so each of l0s rep fields is confined .
• We trivially have that l0 is not repMutating since l0 /∈ dom(σ′), by No Dangling, there can’t

be any monitor expressions for it in Ev.
(d) Every reachable l′ ̸= l0 that was repConfined and not repMutating still is:

• Suppose we have made it so that for some f ′ ∈ repFields(σ′, l′), l′.f ′ is no longer confined .
Since we didn’t modify the ROG of l′ nor the ROG of any other pre-existing l′′, we must
have that σ′[l′.f ′] is now mutatable through l0.fi, for some i ∈ [1, n]. This requires that li
is an initialiser for a mut or rep field, which by Type Consistency means that µi ≤ mut. But
then σ′[l′.f ′] was already mutatable through µi li, so l′.f ′ can’t have already been confined , a
contradiction.

• We can’t have caused l′ to be repMutating since we haven’t introduced any monitor expres-
sions, nor modified any existing ones.

(e) Every reachable l′ ̸= l0 is headNotObservable: by No Dangling, l′ ∈ dom(σ′), so by Lost Forever, l′
must have already been reachable. Thus, by the inductive hypothesis, l′ must be headNotObservable,
but we haven’t removed any monitor expression or field accesses (because the arguments to the
constructor are all fully reduced values), thus l′ is still headNotObservable.

2. (access) σ|Ev[µ l.f ] → σ|Ev[µ::κσ[l.f ]], where Cσ
l .f = κ_ f :

(a) No reachable l′ is repCircular : this holds by the inductive hypothesis and the fact that we haven’t
mutated memory.

(b) If l is reachable and it was repConfined and not repMutating , than it still is:
• If κ ̸= rep, then we can’t have broken confined for any f ′ ∈ repFields(σ, l), since by definition

of repConfined , σ[l.f ′] can’t have been mutatable through σ[l.f ].
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• If κ = rep, since l′ was not repMutating , this field access can’t have been inside a rep mutator
(or else we would be inside a monitor). As fields are instance private, we have µ ̸= mut, or
else the field access would have come from a rep mutator.
If µ = capsule, then by Capsule Consistency and the definition of repCircular , l is not reachable
from Ev[µ::κσ[l.f ]], so it is irrelevant if l is no longer repConfined . Otherwise, since µ /∈
{Kwcapsule, mut}, we have µ::κ ≰ mut, so l.f is still confined . By the above case for κ ̸= rep,
every other f ′ ∈ repFields(σ, l) is confined .

• We can’t have made l′ repMutating since we have introduced any monitor expressions.
(c) If l was repMutating or not repConfined , than it is headNotObservable: by the inductive hypoth-

esis, l was headNotObservable before this reduction, thus Ev = E ′
v[M(l;E ′′

v; _)]. As l is clearly
reachable in E ′′

v [µ l.f ], by definition of headNotObservable we must have that l is not reachable
from E ′′

v , and κ = rep. By repCircular , l is not in the ROG of σ[l.f ], and so l is not reachable
from E ′′

v [µ::κσ[l.f ]], and so it is still headNotObservable.
(d) Every reachable l′ ̸= l that was repConfined and not repMutating , still is:

• Since this reduction doesn’t modify memory, and µ::κ ≤ mut only if µ ≤ mut, we can’t have
made the ROG of any rep field f ′ of l′ mutatable without going through l′, so repConfined
is preserved.

• As in the new/new true case above, we can’t have made repMutating hold as we haven’t
introduced any monitor expressions.

(e) If l was repMutating or not repConfined , than it is headNotObservable: if f ∈ repFields(σ, l), with
Ev of form E ′

v[M(l;E ′′
v; _) and l not reachable through E ′′

v , then e is of form E ′
v[M(l;E ′′

v [σ[l.f ]]; ]).
By the above, l is not repCircular , and so l is not reachable through σ[l.f ], thus l is not reachable
through E ′′

v [σ[l.f ]], and so l is headNotObservable. Otherwise, by the inductive hypothesis, l was
headNotObservable, by definition of headNotObservable, since the above case does not hold, then
Ev is of form E ′

v[M(l;E ′′
v; _)] with l not reachable through E ′′

v [µ l.f ], thus by Lost Forever, l is not
reachable through E ′′

v [σ[l.f ]], thus l is still headNotObservable.
(f) Every reachable l′ ̸= l that was repMutating or not repConfined is headNotObservable: as this

reduction doesn’t create any new objects, by No Dangling and Lost Forever, anything reachable
was already reachable, thus by the inductive hypothesis, l′ must have been headNotObservable.
but we haven’t removed any monitor expression or field accesses on l′, thus l′ must still be
headNotObservable.

3. (update) σ′|Ev[µ l.f =µ′ l′] → σ′[l.f = l′]|Ev[M(l; mut l; (read l).invariant())]:
(a) For each f ′ ∈ repFields(σ, l), l.f ′ is still not repCircular :

• if f ′ = f , then by Type Consistency and Capsule Consistency, encapsulated(σ′,Ev[µ l.f =
□], l′). Hence l is not reachable from l′, and so after the update, l.f ′ cannot be circular .

• otherwise, by the inductive hypothesis, l.f ′ was not repCircular , so l /∈ ROG(σ′, σ′[l.f ′]), and
so this update couldn’t have change the ROG of l.f ′, and so it is still repCircular .

(b) For every reachable l′′ ̸= l, and f ′ ∈ repFields(σ, l′′), l′′.f ′ is still not circular :
• By the inductive hypothesis, l′′.f ′ was not circular .
• If l′′ was repConfined , by Mut Update, µ ≤ mut. By repConfined , the ROG of σ′[l′′.f ′] is not
mutatable, except through a field access on l′′, but this rule doesn’t perform a field access,
so since l′′ ̸= l, we must have that l /∈ ROG(σ′, σ′[l′′.f ′]). Since we can’t have modified the
ROG of σ′[l′′.f ′], l′′.f ′ is still not circular .

• Otherwise, by the inductive hypothesis, l′′ was headNotObservable, and so l′′ /∈ ROG(σ′, l′),
so we can’t have added l′′ to the ROG of anything, thus l′′.f ′ is still not circular .

(c) Any reachable l′′ that was repConfined and not repMutating still is:
• Suppose l′′ = l and f ∈ repFields(σ′, l), by Type Consistency and Capsule Consistency, l′ is
encapsulated , thus l′ is not mutatable from Ev, and l is not reachable from l′. Hence l′ is still
encapsulated , and so l.f is still confined .
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• Now consider any f ′ ∈ repFields(σ′, l′′), with l′′.f ′ ̸= l.f ; by the above, l is not repCircular
and so l /∈ ROG(σ′, σ′[l′′.f ′]). If f was a mut or rep field, by Type Consistency, µ′ ≤ mut, so by
repConfined , l′ /∈ ROG(σ′, σ′[l′′.f ′]); thus we can’t have made ROG(σ′, σ′[l′′.f ′]) mutatable
through l.f ; so σ′[l′′.f ′] can’t now be mutatable through mut l. By Mut Consitency, we couldn’t
have have made σ′[l′′.f ′] mutatable some other way, so l′′ is still repConfined .

• As in the above cases for new/new true, l′′ is still not repMutating as we haven’t introduced
any monitor expressions.

(d) Every reachable l′ that was repMutating or not repConfined is headNotObservable: similarly to
the above case for access, as this reduction doesn’t create any new objects, by by No Dangling
and Lost Forever, anything reachable was already reachable, thus by the inductive hypothesis,
l′ must have been headNotObservable. but we haven’t removed any monitor expression or field
accesses, thus l′ must still be headNotObservable.

4. (call/call mutator) σ|Ev[µ0 l0.m(µ1 l1, ..., µn ln)] → σ|Ev[e]

(a) Every reachable l′ is not repCircular : as this rule doesn’t mutate memory, by the inductive
hypothesis, every reachable l′ is still not repCircular .

(b) If l0 was repConfined and not repMutating , it either still is, or is now headNotObservable:
• As we haven’t modified memory, and by our well-formedness rules on method bodies, we

haven’t introduce any new ls into the main-expression, we must have that l0 is still repConfined .
• Suppose the rule applied was call, by our well-formedness rules for method bodies, e doesn’t

contain a monitor. Moreover, by the call rule, e is not a rep mutator, if e = E [µ′ l0.f ], for
some f ∈ repFields(σ, l0), we must have that m was not a mut method. Since fields are
instance-private, we must have µ′ ≰ mut, and by our well-formedness rules on method bodies,
e doesn’t contain any monitors, thus we can’t have caused l0 to be repMutating .

• Otherwise, the rule applied was call mutator, and m is a rep mutator, and hence we
have e = M(l0; e′; (read l0).invariant()). By our rules for rep mutators, m must be a mut
method with only imm and capsule parameters, thus by Type Consistency, µ0 ≤ mut, and
for each i ∈ [1, n], µi ∈ {imm, capsule}. By Imm Consistency and Capsule Consistency, l0
can’t be reachable from any li. Since rep mutators use this only once, to access a rep field,
e′ = E [mut l0.f ], for some f ∈ repFields(σ, l0). By our rules for rep mutators, l0 /∈ E , and l0
is not reachable from any li, and by our well-formedness rules for method bodies, there are
no other ls in E , thus we have that l0 is not reachable from any E , thus headNotObservable
now holds for l.

(c) Every l′ ̸= l0 that was repConfined and not repMutating , still is:
• By the above, since we haven’t modified memory or introduced any new ls, l′ must still be
repConfined .

• Since l′ ̸= l0 and fields are instance-private, we must have that there is no µ′ l′.f ∈ e.
Moreover, by our well-formedness rules on method bodies, and the call/call mutator
rules, the only monitor that could be in e is a monitor on l0, thus we can’t have made l′

repMutating .
(d) Every reachable l′ that was repMutating or not repConfined is headNotObservable: as in the

update case above, by the inductive hypothesis, l′ must have been headNotObservable, as we
haven’t removed any monitor expressions or field accesses, l′ is still headNotObservable.

5. (try error) σ|Ev[tryσ
′
{e} catch {e′}] → σ|Ev[e

′], where error(σ, e)

(a) Every reachable l is not repCircular : as in the call/call mutator case above, since this rule
doesn’t mutate memory, by the inductive hypothesis, every reachable l is still not repCircular .

(b) Every reachable l that was repConfined and not repMutating still is: by Mut Consistency and the
fact that we haven’t modified memory, l must still be repConfined . Since we haven’t introduced
any monitor expressions or field accesses, l cannot now be repMutating .

(c) If l is still reachable, and was repMutating or not repConfined then it is now repConfined and not
repMutating :
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• By definition of error , we have e = E ′
v[M(l; v; v′)].

• If the monitor was introduced by new or update, then v = mut l. And so headNotObservable
can’t have held for l since l = l′, and v was not the receiver of a field access. Thus by the
inductive hypothesis, l must have been repConfined and not repMutating , a contradiction.

• By definition of validState and our well-formedness rules on method bodies, we must have
that monitor must introduced by call mutator, due to a call to a rep mutator on l.37

• From our reduction rules, it follows that we were previously in a state σi|ei, where i ∈
[1,m − 1], ei is of form E ′′

v [e
′′], and the next state was obtained by said application of the

call mutator rule to e′′.
• Moreover, it follows that E ′′

v = Ev[tryσ
′
{E ′

v} catch {e′}], as no reduction rules modify the
Ev.

• We must not have had that l was headNotObservable, since e′′ would contain l as the receiver
of a method call. Thus, by our inductive hypothesis, in state i, l was repConfined and not
repMutating .

• By Strong Exception Safety and No Dangling, every l′ reachable from Ev[e
′] has not been

mutated, i.e. σ(l′) = σi(l
′) = σ′(l).

• Since nothing reachable has been mutated, it follows that l is still repConfined .
• By validState and our well-formedness rules on method bodies, it follows that e′ contains no

monitor expressions.
• Moreover, since l was not repMutating in Ev[tryσ

′
{E ′

v[e
′′]} catch {e′}], and e′ contains no

monitors, l it follows that l is not repMutating in Ev[e
′].

(d) Every reachable l′′ ̸= l that was repMutating or not repConfined is headNotObservable: as in the
above case for update, by the inductive hypothesis, l′′ must have been headNotObservable, as we
haven’t removed any monitor expressions on l′′, or any field accesses, l′′ is still headNotObservable.

6. (monitor exit) σ|Ev[M(l;µ l′; _)] → σ|Ev[µ l′]

(a) Every reachable l′′ is not repCircular : as in the call/call mutator case above, since this rule
doesn’t mutate memory, by the inductive hypothesis, every reachable l′′ is still not repCircular .

(b) Every reachable l′′ that was repConfined and not repMutating still is: as in the try error
case above, by Mut Consistency and the fact that we haven’t modified memory, l′′ must still be
repConfined . Since we haven’t introduced any monitor expressions or field accesses, l′′ cannot
now be repMutating .

(c) If l is still reachable, and l was repMutating or not repConfined then it is now repConfined and
not repMutating :

• If the monitor was introduced by new or update, then µ l′ = mut l. And so headNotObservable
can’t have held for l since l = l′, and v was not the receiver of a field access. Thus by the
inductive hypothesis, l must have been repConfined and not repMutating , a contradiction.

• By definition of validState and our well-formedness rules on method bodies, we must have
that monitor must introduced by call mutator, due to a call to a rep mutator on l.

• From our reduction rules, it follows that we were previously in a state σi|ei, where i ∈
[1,m − 1], ei is of form E ′

v[e
′], and the next state was obtained by said application of the

call mutator rule to e′.
• Moreover, it follows that E ′

v = Ev, as no reduction rules modify the Ev.
• We must not have had that l was headNotObservable, since e′ would contain l as the receiver

of a method call. Thus, by our inductive hypothesis, in state i, l was repConfined and not
repMutating .

37A type-system will likely prevent this case from happening, as this would require calling a mut method on l, but l is
reachable outside the try block. However, if the type system can prove that said mut method will not actually mutate l, this
would not violate our requirements. Thus we still need to ensure that Rep Field Soundness holds in this case.
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• As with the above case for try error, it follows from the inductive hypothesis that l must have
been headNotObservable, and so the monitor must have been introduced by call mutator.

• Thus, we were previously in a state σi|ei where i ∈ [1,m − 1], ei is of form Ev[e
′], and the

next state was obtained by said application of the call mutator rule to e′.
• Thus, by the inductive hypothesis, in state i, l must have been repConfined and not repMutating .
• Because l was not repMutating in σi|Ev[e

′], and µ l′ contains no monitors, l is not repMutating
in Ev[µ l′].

• Since a rep mutator cannot have any mut parameters, by Type Consistency and Non-Mutating,
the body of the method can only modify things mutatable through l, or a capsule parameter.

• By Type Consistency, and Capsule Consistency, every capsule parameter is encapsulated , and
so anything mutated through such a parameter must have been unreachable outside the call.

• Thus, forall l′ ∈ dom(σi), if reachable(σi,Ev, l
′) and l′ /∈ MROG(σi, l), then σ(l) = σi(l).

• If µ = capsule, then by Capsule Consistency, not part of the MROG of any rep field of l can
be in the ROG of l′ (or else l would have to be unreachable), so we can’t have made such a
field mutatable.

• If µ ̸= capsule, then since a rep mutator cannot have a mut return type, and our call
mutator rule wraps the method body in a as expression, we must have that µ ≰ mut. Thus
µ ∈ {read, imm}, and so by l is not mutatable through µ l′.

• As l was repConfined in σi|Ev[e
′], and we haven’t modified anything reachable through σ \ l,

nor have we made the ROG of l mutatable through µ l′, it follows that l is also repConfined
in Ev[µ l′].

(d) Every reachable l′′ ̸= l that was repMutating or not repConfined is headNotObservable: as in the
update case above, by the inductive hypothesis, l′′ must have been headNotObservable, as we
haven’t removed any monitor expressions on l′′, or any field accesses, l′′ is still headNotObservable.

7. (as, try enter, and try ok) these are trivial, since as in the above cases:
(a) Every reachable l is not repCircular : as in the call/call mutator case above, since these rules

don’t mutate memory, by the inductive hypothesis, every reachable l is still not repCircular .
(b) Every reachable l that was repConfined and not repMutating still is: as in the try error case

above, by Mut Consistency and the fact that these rules don’t modified memory, l must still be
repConfined . Since this rules don’t introduce any monitor expressions or field accesses, l cannot
now be repMutating .

(c) Every reachable l that was repMutating or not repConfined is headNotObservable: as in the
update case above, by the inductive hypothesis, l must have been headNotObservable, as these
rules don’t remove any monitor expressions or field accesses, l′′ is still headNotObservable.

Stronger Soundness
It is hard to prove Soundness directly, so we first define a stronger property, called Stronger Soundness.

We say that an object is monitored if execution is currently inside of a monitor for that object, and the
monitored expression e1 does not contain a reference to l as a proper sub-expression:

monitored(e, l) iff e = Ev[M(l; e′; _)] and l ∈ e′ only if e′ = _ l.
A monitored object is associated with an expression that cannot observe it, but may reference its internal
representation directly. In this way, we can safely modify its representation before checking its invariant.
The idea is that at the start the object will be valid and e′ will reference l; but during reduction, l will be
used to modify the object, but not observe it; only after that moment, the object may become invalid.

Stronger Soundness says that starting from a well-typed and well-formed σ0|e0, and performing any
number of reductions, every reachable object is either valid or monitored :
Theorem 3 (Stronger Soundness).

If validState(σ, e) then ∀l, if reachable(σ, e, l), then valid(σ, l) or monitored(e, l).
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Proof. As with the above proof of Rep Field Soundness, we will prove this inductively on the number of
reductions. By validState we have c 7→ Cap{}|e0 →m σ|e, The base case when m = 0 is trivial, from our
requirements for the Cap class, σ|(read c).invariant() → σ|new True() → σ, l 7→ True{}|l, for some l, thus
by Determinism, it follows that c (the only thing in the memory) is valid .

In the inductive case, where m > 0, we have σ0|e0 → ... → σm−1|em−1 → σ|e, for some σ0, ..., σm−1 and
e0, ..., em−1, where σ0|e0 is a valid initial memory and expression. Our inductive hypothesis is then that that
everything reachable from the previous validState is valid or monitored . We then proceed by cases on the
reduction rule that gets us to σ|e:

1. (new) σ′|Ev[new C(_ l1, ...,_ ln)] → σ′, l0 7→ C{l1, ..., ln}|Ev[M(l0; mut l0; (read l0).invariant())]:
• Clearly the newly created object, l, is monitored .
• This rule does not modify pre-existing memory, introduce pre-existing ls into the main expression,

nor remove monitors on other ls, by the inductive hypothesis, every l′ ̸= l0 is still valid (due to
Determinism), or monitored .

2. (new true) σ′|Ev[new True()] → σ′, l0 7→ True{}|Ev[mut l0]:
• The True class is required to have an invariant of new True(), so as with c in the base case above,

we have that l0 is valid .
• As in the above case for new, since we didn’t modify pre-existing memory, introduce pre-existing
ls into the main expression, nor remove monitors, by the inductive hypothesis, every l′ ̸= l0 is
still valid or monitored .

3. (update) σ′|Ev[µ l.f = v] → σ|Ev[e
′], where e′ = M(l; mut l; (read l).invariant()):

• Clearly l is now monitored .
• Consider any other l′, where l ∈ ROG(σ′, l′) and l′ was valid ; now suppose we just made l′

invalid . By our well-formedness criteria, invariant() can only accesses imm and rep fields, thus
by Non-Mutating, and Determinism, we must have that l was in the ROG of σ′[l′.f ′], for some
f ′ ∈ repFields(σ′, l′).
Since l ̸= l′, l′ can’t have been repConfined . Thus, by Rep Field Soundness, l′ was headNotObservable,
and so Ev[µ l.f = v] is of form E ′

v[M(l′; e′′; e′′′)]:
– As the ROG of l′ has just been mutated, and since e′′′ must have come from the reduction of

(read l′′′).invariant(), if follows from Determinism, that we cannot currently be inside e′′′.
– Thus, Ev = E ′

v[M(l′;E ′′
v; e′′′)], where E ′′

v [µ l.f = v] = e′′.
– Suppose that l′ was not reachable in e′′, then clearly l′ /∈ e′′, since l′ ̸= l, it follows that

l′ /∈ E ′′
v [e

′], and so l′ is monitored .
– Otherwise, by definition of headNotObservable, we have that e′′ = E [mut l′.f ′′] for some

f ′′ ∈ repFields(σ′, l′), and where l′ is not reachable in E .
– By the proof for the try error case of Rep Field Soundness, the monitor must have come

from a call to a rep mutator, in a state where l′ was repConfined . Thus, we were previously
in a state σi|ei, for some i ∈ [0,m−1], immediately after a call mutator; moreover, ei is of
form E ′

v[M(l′; e′i; _)], immediately after a call mutator, where e′i is of form E ′
[mut l′.f ′′′].

– By Rep Field Soundness, l′ is not reachable through σ′[l′.f ′′′],. By the proof for the call/call
mutator case of Rep Field Soundness, we have that l′ is not reachable through E ′. Thus,
by Lost Forever, once mut l′.f ′′′ has been reduced, l′ must be unreachable, and it follows that
mut l′.f ′′ = mut l′.f ′′′

– By Mut Update, l is mutatable in the current state, thus by Mut Consistency, we have that
it was also mutatable when call mutator rule was applied. But we have that l′ was
repConfined , so since l ∈ ROG(σ′, σ′[l′.f ′]), we have that l can only be mutatable through l′.

– By Lost Forever, the only way we could have obtain a reference to l was by reducing mut l′.f ′′,
but we haven’t done that yet, a contradiction.

• Every other valid l′, where l /∈ ROG(σ′, l′) is still valid by Determinism.
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• As in the above case, since we don’t remove any monitors, any other l′ that was monitored , is
still monitored .

4. (try error) σ|Ev[tryσ
′
{e} catch {e′}] → σ|Ev[e

′], where error(σ, e) = E ′
v[M(l; _; _)]:

• As with the case for try error in the proof of Rep Field Soundnes, we were previously in a state
σi|ei, where ei = Ev[tryσ

′
{_} catch {_}], and σi = σ′.

• By definition of error , we have that l is not valid in σ, since monitor expressions always start of
as an invariant calls.

• Suppose l is still reachable in σ|Ev[e
′], by Strong Exception Safety, we have l ∈ dom(σ′). Thus by

the inductive hypothesis, we have that l was valid or monitored in the state σ′|ei.
• If l was monitored , then by validState and our well-formedness rules on method bodies, said

monitor must have been introduced by the new, update, or call mutator reduction rules.

• The new and update rules monitor a value, which cannot reduce to a try–catch, so the monitor
must have been introduced by call mutator.

• But by our well-formedness rules on rep mutators, the body of the called method cannot mention
l except to read a field, as shown in the case for update above, l will be unreachable once the
field access has been reduced, which by Lost Forever is a contradiction, as l is reachable through
e.

• Thus, l can’t have been monitored in σ′|ei, so it must have been valid .

• Also by Strong Exception Safety, we have that nothing reachable from l could have been modified,
that is ∀l′ ∈ ROG(σ′, l), we have σ′(l′) = σ(l′). By Lost Forever, and our reduction rules, any
memory location not reachable from a call (read l).invariant() cannot affect its reduction.

• Thus, by Determinism, and the fact that l was valid in σ’, we have that l is still valid , a contra-
diction.

• Thus, l cannot be reachable, so the fact that it is invalid is irrelevant.

• As in the above case for new, since we didn’t modify any memory, or remove any other monitors,
by the inductive hypothesis every l′ ̸= l is still valid or monitored .

5. (monitor exit) σ|Ev[M(l; v; imm l′)] → σ|Ev[v], where Cσ
l′ = True:

• By validState and our well-formedness requirements on method bodies, the monitor expression
must have been introduced by update, call mutator, or new. In each case the third expression
started off as (read l).invariant(), and it has now (eventually) been reduced to imm l′, thus by
Determinism l is valid .

• As in the above case for new, since we didn’t modify any memory, or remove any other monitors,
by the inductive hypothesis every reachable l′ ̸= l is still valid or monitored .

6. (access, call/call mutator, as, try enter, and try ok) these are trivial:

• As in the above case for new, since these rules don’t modify memory or remove monitors, by the
inductive hypothesis, every reachable l is still valid or monitored .

Proof of Soundness
First we need to prove that an object is not reachable from one of its imm fields; if it were, invariant() could
access such a field and observe a potentially broken object:
Lemma 5 (Imm Not Circular).

If validState(σ, e), ∀f, l, if reachable(σ, e, l), Cσ
l .f = imm _ f , then l /∈ ROG(σ, σ[l.f ]).

Proof. The proof is by the definition of validState and induction on the number of reductions; obviously the
property holds in the initial σ|e, since σ = c 7→ Cap{}. Now suppose it holds in a validState(σ′, e′) where
σ′|e′ → σ|e:

54



1. Consider any pre-existing reachable l and f with Cσ′

l .f = imm _ f , by Imm Consistency and Non-
Mutating, the only way ROG(σ, σ[l.f ]) could have changed is if e′ = Ev[µ l.f = µ′ l′], where µ ≤ mut, i.e.
we just applied the update rule. By Type Consistency, µ′ ≤ imm, so by Imm Consistency, l /∈ ROG(σ, l′).
Since l′ = σ[l.f ], we now have l /∈ ROG(σ, σ[l.f ]).

2. The only rules that make an l reachable are new/new true. So consider e = Ev[new C(_ l1, ...,_ ln)],
and each i with C.i = imm _ f . But each of l1, ..., ln existed in the previous state and l /∈ dom(σ′); so
by validState and our reduction rules, l /∈ ROG(σ′, li) = ROG(σ, σ[l.f ]).

Note that the above only applies to imm fields: imm references to cyclic objects can be created by promoting
a mut reference, however the cycle must pass through a field declared as read or mut, but such fields cannot
be referenced in the invariant method.

We can now finally prove the soundness of our invariant protocol:
Theorem 1 (Soundness).

If validState(σ,Er[_ l]), then either valid(σ, l) or trusted(Er, l).
Proof. Suppose validState(σ, e), and e = Er[_ l]. Suppose l is not valid ; since l is reachable, by Stronger
Soundness, monitored(e, l), e = E [M(l; e1; e2)], and either:

• Er = E [M(l;E ′; e2)], that is l was found inside of e1, but by definition of Er, we can’t have e1 = µ l,
this contradicts the definition of monitored , or

• Er = E [M(l; e1;E ′)], and thus l was found inside e2. By our reduction rules, all monitor expressions
start with e2 = (read l).invariant(); if this has yet to be reduced, then E ′

= E ′′
[□.invariant()], thus

trusted(Er, l). By our well-formedness rules for invariant(), the next reduction step will be a call,
e2 will only contain l as the receiver of a field access; so if we just performed said call, E ′

= E ′′
[□.f ]:

hence trusted(Er, l). Otherwise, by Imm Not Circular, Rep Field Soundness, and repCircular , no further
reductions of e2 could have introduced an occurrence of l, so we must have that l was introduced by
the call to invariant(), and so trusted(Er, l).

Thus either l is valid or trusted(Er, l).

B. Example Type System and Proof of Requirements

In this section we formalise a lightweight version of the L42 type system. We then prove that it satisfies
the requirements in Appendix A, and hence soundly supports our invariant protocol. This demonstrates
that our protocol can be satisfied by a realistic type system.

New Notations
First we define the usual subclass hierarchy:

C ≤ C ′ iff:
• C ′ = C,
• ∃C ′′ with C ≤ C ′′ and C ′′ ≤ C ′, or
• we have class C implements Cs {_;_} or interface C implements Cs {_} and C ′ ∈ Cs.

Then we define subtyping:
µC ≤ µ′ C ′ iff µ ≤ µ′ and C ≤ C ′

Recall our definition for µ ≤ µ′:
• µ ≤ µ, for any µ

• imm ≤ read

• mut ≤ read

• capsule ≤ mut and capsule ≤ imm, and capsule ≤ read
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(TSub)
σ; Γ ⊢ e : T

σ; Γ ⊢ e : T ′ T ≤ T ′ (TVar)
σ; Γ ⊢ x : Γ(x)

(TRef)
σ; Γ ⊢ µ l : µCσ

l

(TNew)

σ; Γ ⊢ e1 : κ̃1 C1...
σ; Γ ⊢ en : κ̃n Cn

σ; Γ ⊢ new C(e1, ..., en) : mutC
class C implements _ {Fs;_}
Fs = κ1 C1 _, ..., κn Cn _

(TAccess)
σ; Γ ⊢ e : µC

σ; Γ ⊢ e.f : µ::κC ′ C.f = κC′ f (TUpdate)

σ; Γ ⊢ e : mutC
σ; Γ ⊢ e′ : κ̃ C ′

σ; Γ ⊢ e.f = e′ : mutC
C.f = κC′ f

(TCall)

σ; Γ ⊢ e0 : µC
σ; Γ ⊢ e1 : T1...
σ; Γ ⊢ en : Tn

σ; Γ ⊢ e0.m(e1, ..., en) : T ′
S = µ methodT ′ m(T1 _, ..., Tn _)
C.m ∈ {S, S _}

(TAs)
σ; Γ ⊢ e : µC

σ; Γ ⊢ e asµ′ : µ′ C
µ ≤ µ′ (TAsCapsule)

σ; Γ̂ ⊢ e : mutC

σ; Γ ⊢ e as capsule : capsuleC

(TTryCatch1)

σ; Γ̂ ⊢ e : T
σ; Γ ⊢ e′ : T

σ; Γ ⊢ try {e} catch {e′} : T
(TTryCatch2)

σ; Γ ⊢ e : T
σ; Γ ⊢ e′ : T

σ; Γ ⊢ tryσ
′
{e} catch {e′} : T

(TMonitor)

σ; Γ ⊢ e : T
σ; Γ ⊢ e′ : µ Bool

σ; Γ ⊢ M(l; e; e′) : T
l ∈ dom(σ)

Figure B.3: Type rules

Note that µ ≤ µ′, C ≤ C ′, and T ≤ T ′ are all reflexive and transitive.

Now we define a notation that converts mut reference capabilities to read:
m̂ut = read and µ̂ = µ, if µ ̸= mut

Note that we always have µ ≤ µ̂ and ̂̂µ = µ̂

We extend this to convert all mut variables in an typing environment to read:
Γ̂(x) = µ̂ C iff Γ(x) = µC

Note that we always have ∅̂ = ∅, ̂̂Γ = Γ̂, and Γ(x) ≤ Γ̂(x).

We also extend this to convert all mut references in an expression to read:
ê = e[µ1 l1 := µ̂1 l1, ..., µn ln := µ̂n ln], where {µ1 l1, ..., µn ln} = {v ∈ e}

Finally, we define a notation to mean that two expressions are identical, except perhaps for reference
capability annotations on references:

e ∼ e′ iff e[µ1 l1 := read l1, ..., µn ln := read ln] = e′[µ1 l1 := read l1, ..., µn ln := read ln],
where {µ1 l1, ..., µn ln} = {v ∈ e} ∪ {v ∈ e′}.

Note that the above requires that the µs of an as expression are the same, i.e. e asµ ∼ e′ asµ′ only if µ = µ′.

Type System
We present the typing rules in Figure B.3:

• TSub is the standard “subsumption” rule, an expression with a type T also has any supertype T ′, in
particular this works with our reference capabilities, e.g. an expression of type immC also has type
readC.

• TVar simply looks up the type of an x in the environment Γ. Note that this requires that x ∈ dom(Γ),
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i.e. that there are no undefined variables.

• TRef types a reference with the given capability by looking up the memory σ to determine the
appropriate class. Note that this requires that l ∈ dom(σ), i.e. that there are no dangling pointers.
However, it does not impose any restrictions on the reference capability µ, for example an expression
with two capsule references with the same l is considered well-typed by our type system, the proofs of
our various type system requirements ensure that such an expression cannot be a validState, i.e. they
will not actually occur when reducing a valid initial program.

• TNew types a new expression by checking that there is an initialising expression for each field fi, that
has the corresponding class Ci and capability κ̃i. See Section 5 for the definition of κ̃.

• TAccess types a field access expression by checking that the receiver has the given field. The µ::κ
computes the resulting reference capability in the same way as the Access reduction rule, although
at runtime the result of the expression may have a more specific reference capability.

• TUpdate types a field update expression by checking that the receiver has the given field, and the
new value has the appropriate type. As with the New rule, we use κ̃ to compute the required reference
capability. This rule requires the receiver of the update to be typeable as mut, this ensures that only
mut and capsule references can be used to mutate an object.

• TCall types a method call by looking for the appropriate method/signature in the receivers class. If
the receivers class is an interface, then C.m will be of form S, otherwise it will be of form S _ and
hence have a method body, but we do not use this extra information. We check that the receiver
conforms to the reference capability of the method, and check that each argument conforms to the
corresponding parameter type. Note that we don’t need to know whether the called method is a rep
mutator or not, as the runtime will only introduce an extra invariant check, and not alter the result
of the method.

• TAs types an as expression that is trivially sound because the body of the expression conforms to the
target reference capability. This allows the reference capability of an expression to be restricted, e.g.
if µ′ = read, the as expression cannot be used as the receiver of a field update, even if µ = mut.

• TAsCapsule is the capsule promotion rule, it is the main way the type system is practical. As as
expressions must have come from a method body, we will initially have ∅; Γ̂ ⊢ e : mutC, and so e will
contain no references. In particular, this means that if e uses any mut variables in Γ it can only see
them as read, in particular, our typing rules ensure that such a variable cannot be stored in the heap,
nor can any part of its ROG be accessed as mut (because TAccess will type such an access as read or
imm). This is enough to ensure that once the variables in Γ have been substituted for values and the
body is reduced to a value, no mut or read variables in Γ will be reachable from the result of e. Thus
every object reachable from the result of e will be a newly created object, immutable, or reachable
only through capsule variables in Γ. This ensures that the result is encapsulated as the non-immutable
objects reachable from a capsule variable in Γ will not be reachable elsewhere in the program.

During reduction, we will type the expression under σ; ∅, and so e may contain mut references, however
this does not break our guarantees since we previously typed the expression under ∅; Γ̂, and so any
such references must have been created during the reduction of e, and cannot have come from the Γ̂.

The full L42 language supports more promotions, such as read to imm. These could be added to our type
system, but would greatly complicate our proofs. The TAsCapsule rule is sufficient to demonstrate
that our invariant protocol can be supported in a system with promotions.

• TTryCatch1 types a try–catch expression that has yet to be reduced, similar to the TAsCapsule
rule, we require the try part to be typeable under Γ̂. This ensures strong exception safety as Γ̂
contains no mut variables, and so the only way e can obtain a mut reference is from a capsule variable
or a freshly created object. In addition, since the only preexisting objects that can be seen as mut are
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those reachable from capsule variables in Γ, there is no way for e to store any state in a place that e′

could observe it.

• TTryCatch2 is used to type annotated try–catch expressions during reduction, as such expression
cannot occur in method bodies, we will always have Γ = ∅. As with the TAsCapsule typing rule,
since try–catch expressions can only be introduced through method calls, we don’t need extra type
restrictions. In particular, the check that ∅; Γ̂ ⊢ e : T holds from within a method body is sufficient to
reason over try–catches in the main expression.

• Monitor type checks monitor expressions introduced by reduction, the l will refer to the monitored
object, e will compute the result of the entire expression (provided the invariant check succeeds) and
the e′ will be the invariant check itself. Note that e will be computed before e′. The side condition
on l is not strictly needed as it follows directly from No Dangling. Note that from our signature of the
invariant method and Type Preservation below, e′ will always have type imm Bool, however we need to
allow an arbitrary µ for our Bisimulation lemma below.

We use the above typing rules to type-check each method against their declared return type, under the
assumption that their parameters and receiver have the appropriate type. We also require that each method
use a capsule parameter at most once. Formally, we require that:

∀C0,m if C0.m = µ0 methodT m(µ1 C1 x1, ..., µn Cn xn) e, we require:
• ∅; this 7→ µ0 C0, x1 7→ µ1 C1, ..., xn 7→ µn Cn ⊢ e : T , and
• ∀i ∈ [1, n], if µi = capsule, then ∀E with e = E [x], x /∈ E .

Finally, we define a ⊢ σ notation to verify that memory respects the class table.
⊢ σ iff ∀l0 ∈ dom(σ):
• σ(l0) = C0{l1, ..., ln},
• we have class C0 implements _ {Fs;_},
• Fs = _C1 _, ...,_Cn _, and
• Cσ

l1
≤ C1, ...,C

σ
ln

≤ Cn.
Thus ⊢ σ ensures that there are no dangling pointers, each object has a proper class (and not an interface),
they have the appropriate number of fields, and each field value has an appropriate class. Note that
⊢ σ doesn’t require the field kinds are respected, this is ensured by the below proofs of our type system
requirements.

Lemmas
Often we need to use the properties guaranteed by the type-rules for a specific form of expression, to this
aim we define a slightly different typing judgement that excludes the TSub rule:

σ; Γ ⊢ e :: T iff σ; Γ ⊢ e : T holds by a rule other than TSub.
Note that σ; Γ ⊢ e :: T may still use TSub for the subexpressions of e.

Now we prove that we can always extract a σ; Γ ⊢ e :: T from a σ; Γ ⊢ e : T ′ judgement:
Lemma 6 (Type Rule).

σ; Γ ⊢ e : T holds if and only if σ; Γ ⊢ e :: T ′ holds for some T ′ ≤ T

Proof. The “only if” direction holds directly from induction on the length of the type derivation of σ; Γ ⊢ e : T
and the fact that ≤ is transitive. The “if” direction holds trivially since σ; Γ ⊢ e :: T ′ implies σ; Γ ⊢ e : T ′,
and then TSub can be used to get σ; Γ ⊢ e : T

This lemma means that if we know the syntactic form of a well-typed expression e, we can use Type Rule
to determine which of the non-TSub rules must have applied.

Now we show that the type system types references according to their reference capability and class:
Lemma 7 (Ref Type).

σ; ∅ ⊢ µ l : T if and only if µCσ
l ≤ T .
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Proof. Follows immediately from Type Rule and the TRef and TSub typing rules.

We note that if an expression is well-typed, then each subexpression must also be well-typed. Note that
the proof is non-trivial as we sometimes type a subexpression under Γ̂ and not Γ.
Corollary 1 (Nested Type).

If σ; Γ ⊢ E [e] : T , then σ; Γ ⊢ e :: T ′, for some T ′.
Proof. We prove this by induction on the size of E . The base case follows trivially from Type Rule.

In the inductive case, by Type Rule and the structure of our typing rules, we have E = E ′
[E ′′

] where
E ′′ ̸= □ and is otherwise minimal. By the inductive hypothesis, we have that σ; Γ ⊢ E ′′

[e] :: T ′′ holds for
some T ′′. Since e is a direct subexpression of E ′′, each such rule has a premise of form σ; Γ ⊢ e : T ′′′ or
σ; Γ̂ ⊢ e : T ′′′, for some T ′′′.

If σ; Γ̂ ⊢ e : T ′′′, we can turn such a typing derivation into one for σ; Γ ⊢ e : T ′′′,

by replacing each occurrence of a (TVar)
σ; Γ̂ ⊢ x : Γ̂(x)

with (TSub)

(TVar)
σ; Γ ⊢ x : Γ(x)

σ; Γ ⊢ x : Γ̂(x)
.

The side condition for TSub trivially holds as we always have Γ(x) ≤ Γ̂(x). Note that this works even if

the typing derivation for σ; Γ̂ ⊢ e : T ′′′ itself uses the TAsCapsule or TTryCatch1 rules, since ̂̂
Γ = Γ̂.

Thus we have σ; Γ ⊢ e : T ′′′, and so by Type Rule, we have σ; Γ ⊢ e :: T ′, for some T ′.
Now we show that if we have a σ; Γ ⊢ e : T then we can substitute each variable in dom(Γ) with an

appropriate reference, and e will still have type T :
Lemma 8 (Substitution).

If dom(Γ) = {x1, ..., xn}, ∅; Γ ⊢ e : T , and µ1 C
σ
l1
≤ Γ(x1), ..., µn C

σ
ln

≤ Γ(xn),
then σ; ∅ ⊢ e[x1 := µ1 l1, ..., xn := µn ln] : T .

Proof. Let e′ = e[x1 := µ1 l1, ..., xn := µn ln]. The proof then follows by induction on the size of the typing
derivation applied to obtain σ; Γ ⊢ e : T . We then proceed by cases on the typing rule that gave us
σ; Γ ⊢ e : T , show that we con obtain σ; ∅ ⊢ e′ : T :

• Suppose the TVar typing rule applied, i.e. e = x and T = Γ(x). Thus there is some i ∈ [1, n] with
xi = x and e′ = µi li. By the TRef typing rule, we have σ; ∅ ⊢ e′ : µi C

σ
li
. Since µi C

σ
li
≤ Γ(xi), by the

TSub typing rule, we have σ; ∅ ⊢ e′ : Γ(xi), as required.

• Suppose the TAsCapsule typing rule applied, i.e. e = e0 as capsule and T = capsuleC, for some e0
and C, where ∅; Γ̂ ⊢ e0 : mutC. Thus e′ = e′0 as capsule where e′0 = e0[x1 := µ1 l1, ..., xn := µn ln].

Note that dom(Γ̂) = Γ, and consider each i ∈ [1, n], Γ(xi) will be of form µ′
i Ci where Γ̂(xi) = µ̂′

i Ci,
µi ≤ µ′

i, and Cσ
li
≤ Ci. Clearly µ′

i ≤ µ̂′
i and so µi ≤ µ̂′

i, thus we have µi C
σ
li
≤ Γ̂(xi).

By the above and the inductive hypothesis, we have that σ; ∅ ⊢ e′0 : mutC. Thus by TAsCapsule and
the fact that ∅̂ = ∅, we have σ; ∅ ⊢ e′0 as capsule : capsuleC, as required.

• Suppose the TTryCatch1 typing rule applied, i.e. e = try {e0} catch {e1} for some e0 and e1, where
∅; Γ̂ ⊢ e0 : T and ∅; Γ ⊢ e1 : T . Thus e′ = try {e′0} catch {e′1} where e′0 = e0[x1 := µ1 l1, ..., xn := µn ln]
and e′1 = e1[x1 := µ1 l1, ..., xn := µn ln]. By the above TAsCapsule case and the inductive hypothesis,
we have σ; ∅ ⊢ e′0 : T . By the inductive hypothesis, we also have σ; ∅ ⊢ e′1 : T . Thus by the
TTryCatch1 rule we have σ; ∅ ⊢ try {e′0} catch {e′1} : T .

• Suppose the TRef or TMonitor rules applied, then we would have an l ∈ dom(∅), a contradiction.

• Otherwise, the TSub, TUpdate, TNew, TAccess, TTryCatch2, TCall, or TAs typing rule
applied. The side conditions of these rules (if any) do not depend on the Γ or σ, nor the xs or vs in
the expression, thus the side conditions still hold for a conclusion of form σ; ∅ ⊢ e′ : T .

Now consider each premise of these rules (if any). Each such premise is of form ∅; Γ ⊢ e0 : T0,
where e0 is a subexpression of e. Thus there is a corresponding subexpression e′0 of e′ such that
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e′0 = e0[x1 := µ1 l1, ..., xn := µn ln]. Thus by the inductive hypothesis we have σ; ∅ ⊢ e′0 : T0, which is
the corresponding premise for a conclusion of form σ; ∅ ⊢ e′ : T .

Thus we can use the same typing rule to obtain a conclusion of form σ; ∅ ⊢ e′ : T .

We show that if a method call on fully reduced values is well-typed, the receiver and each argument
satisfies the method signature, and once these have been substituted in, the body has the appropriate type.
Lemma 9 (Method Type).

If ⊢ σ and σ; ∅ ⊢ µ0 l0.m(µ1 l1, ..., µn ln) : T , then:
1. Cσ

l0
.m = µ′

0 methodT ′ m(µ′
1 C1 x1, ..., µ

′
n Cn xn) e,

2. µ0 ≤ µ′
0,

3. µ1 C
σ
l1
≤ µ′

1 C1, ..., µn C
σ
ln

≤ µ′
n Cn,

4. σ; ∅ ⊢ e[this := µ′
0 l0, x1 := µ′

1 l1, ..., xn := µ′
n ln] : T

′, and
5. T ′ ≤ T .

Proof.

1. By Type Rule, the TCall typing rule rule applied, and so µ0 l0 is well-typed, and by Ref Type, Cσ
l0

is well-defined. Moreover, by ⊢ σ, we have that Cσ
l0

is not an interface, so by our grammar, we have
Cσ

l0
.m = S e where S = µ′

0 methodT ′ m(µ′
1 C1 x1, ..., µ

′
n Cn xn) for some e.

2. By the TCall typing rule applied, so we have σ; ∅ ⊢ µ0 l0 : µC, for some µ and C. By Ref Type, we
have µ0 ≤ µ and Cσ

l0
≤ C.

If C is an interface, then by our well-formedness rules on the class table, we have C.m = S. Otherwise,
C is a class, and by our well-formedness rules on the class table, we have Cσ

l0
= C.

Regardless, we have C.m ∈ {S, S e}. By the TCall typing rule, this means that µ = µ′
0, thus µ0 ≤ µ′

0.
3. Consider each i ∈ [1, n]. Since C.m ∈ {S, S e}, by the TCall rule we have σ; ∅ ⊢ µi li : µ

′
i Ci. By Ref

Type, we thus have µi C
σ
li
≤ µ′

i Ci.
4. By our well-formedness rules on methods, we have ∅; Γ ⊢ e : T ′, where Γ = this 7→ µ′

0 C
σ
l0
, x1 7→

µ′
1 C1, ..., xn 7→ µ′

n Cn. Since µ0 C
σ
l0
≤ µ′

0 Cσ
l0

and µ1 C
σ
l1
≤ µ′

1 C1, ..., µn C
σ
ln

≤ µ′
n Cn, by Substiution, we

have σ; ∅ ⊢ e[this := µ′
0 l0, x1 := µ′

1 l1, ..., xn := µ′
n ln] : T

′.
5. Finally, since C.m ∈ {S, S e}, by Type Rule and the TCall call rule, we have T ′ ≤ T .

We now present a lemma needed to reason over the types of monitor expressions.Monitor expressions starting
with an invariant call are well-typed provided the body is well-typed.
Lemma 10 (Monitor Type).

If ⊢ σ, l ∈ dom(σ), and σ; ∅ ⊢ e : T then σ; ∅ ⊢ M(l; e; (read l).invariant()) : T .
Proof. We can construct the following typing derivation:

(TMonitor)
σ; ∅ ⊢ e : T

(TCall)
(TRef) σ; ∅ ⊢ read l : readCσ

l

σ; ∅ ⊢ (read l).invariant() : imm Bool

σ; Γ ⊢ M(l; e; (read l).invariant()) : T
By our well-formedness rules on the class table, we have Cσ

l .invariant = read method imm Bool invariant() _,
since ⊢ σ ensures that Cσ

l is not an interface. Thus the side condition required by the TCall rule holds, as
does the l ∈ dom(σ) condition required by TMonitor.

We now prove the standard soundness property of any type system: reduction respects the type of an
expression. Note that this holds for any well-typed expression and well-formed memory, even those that are
not validState. Note as discussed before, our type system does not directly verify the required properties
of our reference capabilities (such as preventing simultaneous imm and mut references to the same object),
rather we prove those separately below.
Theorem 4 (Type Preservation).

If ⊢ σ, σ; ∅ ⊢ e : T and σ|e →n σ′|e′, then ⊢ σ′ and σ′; ∅ ⊢ e′ : T .
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Proof. The proof is by induction on n. In the first base case, we assume n = 0 and the conclusion trivially
holds since σ′ = σ and e′ = e.

In the second base case, we assume n = 1, i.e. σ|e → σ′|e′. We note by Type Rule that we have
σ; ∅ ⊢ e :: T ′, for some T ′ ≤ T . We will then show that σ′; ∅ ⊢ e′ : T ′ holds by induction on the size of e.

In the base case for our inner induction, we assume that there is no Ev and e0 where Ev ̸= □ and
e = Ev[e0]. We now proceed by cases on the reduction rule applied:

• Suppose that the new/new true rule was applied, i.e. we have e = new C(µ1 l1, ..., µn ln), σ′ =
σ, l0 7→ C{l1, ..., ln}, and e′ ∈ {M(l0; mut l0; (read l0).invariant()), mut l0}, and l0 = fresh(σ). By
the TNew typing rule, we have T ′ = mutC, and a declaration class C implements _ {Fs;_} with
Fs = κ1 C1 _, ..., κn Cn _.

Now consider each i ∈ [1, n], clearly Cσ′

li
= Cσ

li
, and by the TNew typing rule, we have σ; ∅ ⊢ µi li :

κ̃i Ci, and so by Ref Type we have Cσ′

li
≤ Ci.

Furthermore, since l0 = fresh(σ), l0 /∈ dom(σ), by the above and the fact that ⊢ σ, we have ⊢ σ′, as
required.

Clearly Cσ′

l0
= C, so by Ref Type, we have σ′; ∅ ⊢ mut l0 : mutC.

If e′ = mut l0 then we are done. Otherwise, e′ = M(l0; mut l0; (read l0).invariant()), and by Monitor Type,
we have σ′; ∅ ⊢ e′ : mutC as required.

• Suppose the access rule was applied, i.e. we have e = Ev[µ l.f ], σ′ = σ, and e′ = µ::κσ[l.f ], where
Cσ

l′.f = κC f . By the TAccess typing rule, we have σ; ∅ ⊢ µ l : µ′ C ′ where C ′ is a class (since the
side condition on TAccess requires C ′ to have a field). By Ref Type, we have µ ≤ µ′ and Cσ

l ≤ C ′.
Since ⊢ σ, Cσ

l is a class, so by our well-formedness rules on the class table, since C ′ is also a class, we
have Cσ

l = C ′. Thus by the TAccess typing rule, since Cσ
l′.f = κC f , we have T ′ = µ′::κC.

If κ = imm then µ::κ = µ′::κ = imm and so trivially µ::κ ≤ µ′::κ. Otherwise, µ::κ = µ and µ′::κ = µ′;
since µ ≤ µ′, we thus have µ::κ ≤ µ′::κ.

Since ⊢ σ, we have Cσ
σ[l.f ] ≤ C, and since µ::κ ≤ µ′::κ, by Ref Type, we have σ; ∅ ⊢ µ::κσ[l.f ] : T ′, as

required.

• Suppose the update rule was applied, i.e. we have e = Ev[µ l.f =µ′ l′], σ′ = σ[l.f = l′], and e′ =
M(l; mut l; (read l).invariant()). By the TUpdate typing rule, we have σ; ∅ ⊢ µ l : mutC, where
C.f = κC ′ f . As with the access case above, we have Cσ

l = C. Thus by the TUpdate typing rule,
we have σ; ∅ ⊢ µ′ l′ : κ̃ C ′ and T ′ = mutC.

By Type Ref we have Cσ
l′ ≤ C ′. Clearly Cσ′

l = Cσ
l and Cσ′

l′ = Cσ
l′ , and so we have Cσ′

l .f = κC ′ f with
Cσ′

l′ ≤ C ′. As σ′ differs from σ only at l.f , by the above and the fact that ⊢ σ, we have ⊢ σ′.

By Ref Type we have σ; ∅ ⊢ mut l : mutC, thus by Monitor Type, we have σ; ∅ ⊢ e′ : mutC as required.

• Suppose that the call/call mutator rule was applied, i.e. we have e = _ l0.m(_ l1, ...,_ ln), σ′ = σ,
e′ ∈ {e′′ asµ′, M(l0; e′′ asµ′; (read l0).invariant())}, e′′ = e′′′[this := µ0 l0, x1 := µ1 l1, ..., xn := µn ln],
and Cσ

l0
.m = µ0 methodµ′ Cm(µ1 _x1, ..., µn _xn) e′′′. By Method Type, we have σ; ∅ ⊢ e′′ : µ′ C ′ and

so µ′ C ≤ T ′. Thus, since µ′ ≤ µ′, by the TAs typing rule, we have σ; ∅ ⊢ e′′ asµ′ : µ′ C. Finally, by
the TSub typing rule, we have σ; ∅ ⊢ e′′ asµ′ : T ′.

If e′ = e′′ asµ′ then we are done. Otherwise, e′ = M(l0; e′′ asµ′; (read l0).invariant()), and by
Monitor Type, we have σ; ∅ ⊢ e′ : T ′ as required.

• Suppose the as rule was applied, i.e. we have e = µ l asµ′, σ′ = σ, and e′ = µ′ l. By the TAs and
TAsCapsule typing rules, we have some C with σ; ∅ ⊢ µ l : _C (since ∅̂ = ∅) and T ′ = µ′ C. Thus,
by Ref Type, we have Cσ

l ≤ C, and σ; ∅ ⊢ µ′ l : µ′ C as required.
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• Suppose the try enter rule was applied, i.e. we have e = try {e1} catch {e2}, σ′ = σ, and e′ =
tryσ{e1} catch {e2}. By the TTryCatch1 typing rule, we have σ; ∅ ⊢ e1 : T ′ and σ; ∅ ⊢ e2 : T ′, thus
by the TTryCatch2 rule we have σ; ∅ ⊢ tryσ{e1} catch {e2} : T ′, as required.

• Suppose the try ok rule was applied, i.e. we have e = tryσ
′′

{v} catch {_}, σ′ = σ, and e′ = v. By
the TTryCatch2 typing we have σ; ∅ ⊢ v : T ′, as required.

• Suppose the try error rule was applied, i.e. we have e = tryσ
′′

{e1} catch {e2}, σ′ = σ, and e′ = e2,
where error(σ, e1). By the TTryCatch2 typing we have σ; ∅ ⊢ e2 : T ′, as required.

• Otherwise, the monitor exit rule was applied, i.e. we have e = M(l; v;µ l′), σ′ = σ, and e′ = v,
where Cσ

l′ = True. By the TMonitor typing rule we have σ; ∅ ⊢ v : T ′ as required.
In the inductive case for our inner induction, we have some e0 and minimal Ev ̸= □, where e = Ev[e0];

thus e0 is a direct subexpression of e. By the structure of our reduction rules we have σ|e0 → σ′|e′0 and
e′ = Ev[e

′
0]. Clearly e′ is not of form v, so the typing rule used to obtain σ; ∅ ⊢ Ev[e0] :: T

′ must not have
been TSub, TVar, or TRef.

Now we can use the same typing rule that gave us σ; ∅ ⊢ Ev[e0] : T
′ to obtain σ′; ∅ ⊢ Ev[e

′
0] : T

′, as
required; this step is valid since:

• The typing rule will require a premise of form σ′; ∅ ⊢ Ev[e
′
0] : T0, for some T0. Since σ; ∅ ⊢ Ev[e0] : T

′,
we must also have σ; ∅ ⊢ e0 : T0, and since we have σ|e0 → σ′|e′0, by the inductive hypothesis, we have
⊢ σ′ and σ′; ∅ ⊢ e′0 : T0.

• The typing rule may require other premises, each of form σ′; ∅ ⊢ e1 : T1, where e1 is a direct subex-
pression of Ev. Since σ; ∅ ⊢ Ev[e0] : T

′, we must also have σ; ∅ ⊢ e1 : T1. Regardless of the reduction
rule applied to get σ|e0 → σ′|e′0, we have ∀l ∈ dom(σ), Cσ

l = Cσ′

l , and so we also have σ′; ∅ ⊢ e1 : T1

(since the only typing rule that depends on the σ is the TRef rule, but since we have not altered the
value of any Cσ

l , such a rule is still valid under σ′).

• The typing rule may require side-conditions to hold. But these are the same side-conditions that σ; ∅ ⊢
Ev[e0] : T

′ has, since no side-conditions depend on the value of σ nor the values of any subexpressions.
Note that the side-conditions may depend on the types, but as shown above, the direct subexpressions
of Ev[e0] have the same types as those of Ev[e0]

′.

Finally, in the inductive case of our outer induction, we have n = k + 1 and σ|e →k σk|ek → σ′|e′. By the
inductive hypothesis we have that ⊢ σk and σk; ∅ ⊢ ek : T and so by the base case for n = 1, we have ⊢ σ′

and σ′; ∅ ⊢ e′ : T , as required.

As a simple corollary, any subexpression obtained from reducing a valid initial memory and main ex-
pression is well-typed.
Corollary 2 (Valid Type).

If validState(σ,E [e]) then ⊢ σ and σ; ∅ ⊢ e :: T , for some T .
Proof. By definition of validState, we have some e0 and T0 with σ0; ∅ ⊢ e0 : T0, σ0 = c 7→ Cap{} and
σ0|e0 →∗ σ|E [e]. Clearly ⊢ σ0 and Cap is defined to be a class with no fields. Thus by Type Preservation we
have σ; ∅ ⊢ E [e] : T0. Finally, by Nested Type and Type Rule we have σ; ∅ ⊢ e :: T , for some T ′.

Now we present a simple lemma relating immutable with MROG and mutatable:
Lemma 11 (Immutable ROG).

If not immutable(σ, e, l) and l ∈ ROG(σ, l′), then:
1. l ∈ MROG(σ, l′), and
2. if mut l′ ∈ e or capsule l′ ∈ e, then mutatable(σ, e, l).

Proof.
1. l cannot be in the ROG of l′ through any imm fields (or else l would be immutable), and so it must be

in ROG(σ, l′) only through mut or rep fields, and so it is in MROG(σ, l′)

2. Follows immediately from the above and the definition of mutatable.
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Finally, we show that reduction does not depend on reference capabilities: if we have an expression e0,
then any memory & expression that could result from reducing e0 can also be obtained by reducing e′0
(except that the resulting expression may differ in reference capabilities). Note that the resulting memory
will be identical, as memory does not contain reference capabilities. This lemma is needed to reason over
our σ; Γ̂ ⊢ e : T judgements: any state obtained by reducing e after substituting in references according to
Γ, will also be obtainable by reducing e after substituting according to Γ̂.
Lemma 12 (Bisimulation).

If e0 ∼ e′0 and σ0|e0 →n σ|e, then we have some e′ where σ0|e′0 →n σn|e′ and e ∼ e′.
Proof. The proof is by induction on n. In the first base case, we assume n = 0, and so we have σ = σ0,
e = e0, and we can set e′ = e′0 so that σ0|e′0 →0 σ|e′ and e ∼ e′ holds.

In the second base case, we assume n = 1. Let e1 and Ev be such that e0 = Ev[e1] and Ev is maximal.
By the structure of our reduction rules, we have that e = Ev[e2], for some e2. Since Ev[e1] ∼ e′0, there exists
E ′
v and e′1 such that e′0 = E ′

v[e
′
1] and e1 ∼ e′1. We now proceed by cases on the reduction rule applied, and

construct an e′2 with σ|E ′
v[e

′
1] → σ|E ′

v[e
′
2] and e2 ∼ e′2:

• Suppose the access rule applied, i.e. we have e1 = µ l.f , σ = σ0, and e2 = µ::κσ0[l.f ], where
Cσ

l .f = κ_ f . Since e1 ∼ e′1, we have e′1 = µ′ l.f , for some µ′. Let e′2 = µ′::κσ0[l.f ], then clearly
e2 ∼ e′2. Since the value of κ does not depend on the value of µ, we can apply the access rule again
to get σ0|E ′

v[µ
′ l.f ] → σ|E ′

v[e2], as required.

• Suppose the try error rule applied, i.e. e1 = tryσ
′
{e3} catch {e4}, σ = σ0, and e2 = e4, where

error(σ, e3). Since e1 ∼ e′1, we have e′1 = tryσ
′
{e′3} catch {e′4}, with e3 ∼ e′3 and e4 ∼ e′4. Let e′2 = e′4,

by the above we have e2 ∼ e′2. As the definition of error does not depend on µs, we have error(σ, e′3).
Thus we can apply the try enter rule again, yielding σ0|E ′

v[e
′
1] → σ|E ′

v[e
′
2], as required.

• Suppose the monitor exit rule applied, i.e. e1 = M(l; v;µ l′), σ = σ0, and e2 = v, where Cσ0

l′ = True.
As this rule doesn’t depend on the value of µ, this is similar to the try error case above, except
that we have e′1 = M(l; v′;µ′ l′), with v ∼ v′, and we set e′2 = v′.

• Suppose the try enter rule applied, i.e. e1 = try {e3} catch {e4}, σ = σ0, and e2 = tryσ0{e3} catch {e4}.
This is similar to the try error case above, except that we have e′2 = try {e′3} catch {e′4}, with e3 ∼ e′3
and e4 ∼ e′4, and we set e′2 = tryσ0{e′3} catch {e′4}.

• Suppose the try ok rule applied, i.e. e1 = tryσ
′
{v} catch {_}, σ = σ0, and e2 = v′. This is similar

to the try error case above, except that we have e′2 = tryσ
′
{v′} catch {_}, with v ∼ v′, and we set

e′2 = v′.

• Otherwise the as, new true, update, call, or call mutator rule applied. Let e′2 = e2, we thus
trivially have e′2 ∼ e2. As these reduction rules do not depend on the capabilities of references38 in
e1 or Ev, either in their side-conditions, or their right-hand-sides, σ0|E ′

v[e
′
1] → σ|E ′

v[e
′
2] is also a valid

reduction, as required.
As Ev[e1] ∼ E ′

v[e
′
1], it follows from the above that Ev[e2] ∼ E ′

v[e
′
2], so set e′ = E ′

v[e
′
2], and then we have

σ0|e′0 → σ|e′ and e ∼ e′, as required.
In the inductive case, we have n = k + 1 and σ0|e0 →k σk|ek → σ|e. By the inductive hypothesis, we

have some e′k such that σ0|e′0 →k σk|e′k and ek ∼ e′k, so by the base case for n = 1, we have some e′ with
σk|e′k → σ|e′ and e′ ∼ e, thus we have σ0|e′0 →k+1 σ|e′ as required.

Conventional Soundness
For the purposes of our invariant protocol and the requirements in Appendix A, we do not require that well-
typed programs do not get stuck during reduction, e.g. because a non-existent method is called. However, to
show that our system is practical, we prove the key property below: every well-typed expression can either
continue to be reduced, it is a value, or it contains an uncaught exception (i.e. an invariant failure). Thus
showing that our type system satisfies the conventional soundness notion of Progress + Type Preservation.

38Note that the as rule does depend on the µ′ in “µ l asµ′”, but that µ′ is not attached to a reference.
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Theorem 5 (Progress).
If ⊢ σ and σ; ∅ ⊢ e : T then either:
• e is of form v,
• error(σ, e), or
• ∃e′, σ′ with σ|e → σ′|e′.

Proof. The proof is by induction on the size of e: we assume the theorem holds for all subexpressions (if
any) of e, and show that it holds for the entire e.

Suppose that there is no e′ or σ′ with σ|e → σ′|e′, then this means that none of the reduction rules
applied. Note that by Type Rule we have some T ′ with σ; ∅ ⊢ e :: T ′.

Suppose that reduction is stuck because there is no rule whose left-hand-side matches σ|e. From the
grammar for Ev and e, the only way this could occur is if e is of form x. But there is no way to obtain
σ; ∅ ⊢ x :: T ′, because the TVar rule would set T ′ = ∅(x), which is undefined.

Thus, there are matching reduction rules, but none of their side-conditions/right-hand-sides are satisfi-
able. Consider each such rule:

• Suppose the new rule matches, and so e = Ev[new C(_ l1, ...,_ ln)]. fresh(σ) is well-defined since there
is always some l0 /∈ dom(σ). Thus, we must have C = True. By definition, the True class contains no
fields, thus by our TNew rule, we have n = 0, and so the new true rule applies, whose side-condition
is satisfiable, a contradiction..

• Suppose the new true rule applies, then as with new above, the side condition is satisfiable, a
contradiction.

• Suppose the access rule matches, and so e = Ev[µ l.f ]. By our TAccess typing rule we require that
σ; ∅ ⊢ µ l : _C, for some C, and C.f is defined. By Type Ref we have that Cσ

l ≤ C. Thus l ∈ dom(σ),
moreover, since ⊢ σ, it follows that Cσ

l is a class (and not an interface). Thus by our well-formedness
rules on the class table, we have Cσ

l = C. By ⊢ σ, since C.f exists, it follows that σ[l.f ] is defined.
Thus every part of the side-condition of access is well defined, a contradiction.

• Suppose the update rule matches, and so e = Ev[_ l.f = _l′]. By our TUpdate typing rule, we have
σ; ∅ ⊢ µ l : _C, for some C, where C.f is defined. By the above case for TAccess, we thus have that
Cσ

l = C and σ[l.f ] is defined. Thus σ[l.f = l′] is also well-defined, and so the right-hand-side of the
update rule is satisfiable, a contradiction.

• Suppose the call rule matches, and so e = Ev[_ l0.m(_ l1, ...,_ ln)]. By Method Type, we have that
Cσ

l0
.m = µ0 methodµ′ _m(µ1 _x1, ..., µn _xn) e′ is well-defined. Thus we must have that µ0 = mut and

e′ = E [this.f ] with Cσ
l0
.f = rep _ f , which satisfies the side-conditions of the call mutator rule, a

contradiction.

• Suppose the call mutator rule matches, and so e = Ev[_ l0.m(_ l1, ...,_ ln)]. As above, by Method
Type, we have that Cσ

l0
.m = µ0 methodµ′ _m(µ1 _x1, ..., µn _xn) e′. Thus the only way the side

conditions are unsatisfiable is if µ0 ̸= mut, e′ is not of form E [this.f ], or Cσ
s l0.f is not of form rep _ f ,

but then the side-conditions for the call rule are satisfiable, a contradiction.

• Suppose the try error rule matches, then e = Ev[tryσ
′
{e′} catch {e′′}]. Thus we have that its

side-condition, error(σ, e′), does not hold. If e′ is of form v, then the try ok rule applies. Thus by the
inductive hypothesis, we must have some σ′ and e′′′ such that σ|e′ → σ′|e′′′. And so e = E ′

v[e
′], where

E ′
v = Ev[tryσ

′
{□} catch {e′′}]. Thus we can use the same rule that got us σ|e′ → σ′|e′′′ to instead

give us σ|E ′
v[e

′] → σ′|E ′
v[e

′′′], a contradiction. Note that this works because the reduction rules never
look at the actual value of the Ev.

• Suppose the monitor exit rule matches, then e = Ev[e
′] with e′ = M(l; v;µ l′). Thus we have that

Cσ
l′ ̸= True. Thus error(σ, e′). If Ev is of form E ′

v[tryσ
′
{E ′′

v} catch {_}], where E ′
v is maximal, then the

try error rule applies. Thus, as e′ is of form M(l; v;µ l′) and Cσ
l′ ̸= True, we have that error(σ,Ev[e

′])
holds.
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• Suppose the as, try enter, or try ok rules match, these rules have no side-conditions, and the
right-hand-sides are trivially satisfiable, a contradiction.

Thus from the above, we must have had that only the monitor exit rule matched, and error(σ, e)
holds.

Proof of Type System Requirements
Finally we prove each of the requirements from Appendix A.
Requirement 1 (Type Consistency).

1. If validState(E [new C(µ1 _, ..., µn _)]), then:
• there is a class C implements _ {Fs;_},

• Fs = κ1 _ _, ..., κn _ _, and

• µ1 ≤ κ̃1, ..., µn ≤ κ̃n.
2. If validState(E [_ l.f =µ_]), then:

• Cσ
l .f = κ_ f , and

• µ ≤ κ̃.
3. If validState(E [µ0 l.m(µ1 _, ..., µn _)]), then:

• Cσ
l .m = µ′

0 method _m(µ′
1 _ _, ..., µ′

n _ _) _, and
• µ0 ≤ µ′

0, ..., µn ≤ µ′
n.

Proof.
1. Follows immediately from Valid Type and our TNew typing rule.
2. Follows immediately from Valid Type and our TUpdate typing rule.
3. Follows immediately from Valid Type and Method Type.

Requirement 5 (Mut Update).
If validState(E [µ_._ = _]), then µ ≤ mut.

Proof. Follows immediately from Valid Type and our TUpdate rule.
Now we prove a slightly stronger version of the Mut Consistency requirement, which works for any well-

formed memory and well-typed expression, even if they are not a validState (i.e. they are not obtainable
by reducing a valid initial memory & expression). We will use this stronger property in combination with
Bisimulation to reason over expressions typed under a Γ̂.
Lemma 13 (Stronger Mut Consistency).

If ⊢ σ, σ; ∅ ⊢ e : T , l ∈ dom(σ), not mutatable(σ, e, l), and σ|e →n σ′|e′, then not mutatable(σ′, e′, l).
Proof. The proof is by induction on n. In the first base case, we assume that n = 0, and our lemma trivially
holds since σ′ = σ and e′ = e.

In the second base case, we assume that n = 1. We now assume that mutatable(σ′, e′, l), and then
proceed by cases on the reduction rule applied and show a contradiction, thus proving that l must not be
mutatable:

• Suppose the update rule was applied, i.e. we have some Ev with e = Ev[µ l′.f =µ′ l′′], σ′ = σ[l′.f = l′′],
and e′ = Ev[M(l′; mut l′; (read l′).invariant())]. By Type Preservation, Type Rule, and our TUpdate
typing rule, we have µ ≤ mut. Since l′ ∈ MROG(σ, l′), and l was not mutatable, we have that
l′ /∈ ROG(σ, l), and so we have not mutated the ROG of l, i.e. ROG(σ, l) = ROG(σ′, l). Thus the
only way for l to have become mutatable is if we have some l1 ∈ ROG(σ′, l) and some l2 with mut l2 ∈ e′

or capsule l2 ∈ e′, and l1 ∈ MROG(σ′, l2). Since σ′ = σ[l′.f = v] and l was not previously mutatable,
we must have caused l1 to be in MROG(σ′, l2) through the fact that σ′(l′.f) = l′′, and so we have
that Cσ′

l′ .f = κC f for some κ ∈ {mut, rep}. Thus before the reduction, we had l1 ∈ MROG(σ, l′′)
and l′ ∈ MROG(σ, l2). By Type Preservation, Type Rule, and our TUpdate typing rule, we have that
µ′ ∈ {mut, capsule}. Since l1 ∈ MROG(σ, l′′) and l1 ∈ ROG(σ, l), we thus have mutatable(σ, e, l), a
contradiction.
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• Suppose the access rule was applied, i.e. we have some Ev with e = Ev[µ l′.f ], σ′ = σ, and e′ = Ev[v],
where v = µ::κσ[l′.f ] and Cσ

l′.f = κC f . As we have not modified memory, the only way for l to
have become mutatable is via v, i.e. we must have µ::κ ≤ mut and some l′′ ∈ ROG(σ, l) such that
l′′ ∈ MROG(σ, σ[l′.f ]). By definition of µ::κ this implies that κ ∈ {mut, rep} and µ ≤ mut. So we
have that l′′ ∈ MROG(σ, l′), and mut l′ ∈ e or capsule l′ ∈ e. Thus we must have mutatable(σ, e, l), a
contradiction.

• Suppose the new/new true rule was applied, i.e. we have some Ev with e = Ev[new C(µ1 l1, ..., µn ln)],
σ′ = σ, l′ 7→ C{l1, ..., ln}, and e′ ∈ {Ev[M(l′; mut l′; (read l′).invariant())], Ev[mut l′]}. Since no preex-
isting part of σ is modified, we must have that l is now mutatable through the mut l′ reference in e′, i.e.
we must have some l′′ ∈ ROG(σ, l) with l′′ ∈ MROG(σ′, l′). By No Dangling we have l′′ ̸= l′, thus we
have that i ∈ [1, n], C.i = κC ′ f , κ ∈ {mut, rep}, and l′′ ∈ MROG(σ, li). By Type Preservation,
Type Rule, and our TNew typing rule, we have that µi ≤ mut. Since l′′ ∈ MROG(σ, li) and
l′′ ∈ ROG(σ, l), we thus have mutatable(σ, e, l), a contradiction.

• Suppose the as rule was applied, i.e. we have some Ev with e = Ev[µ l′ asµ′], σ′ = σ, and e′ = Ev[µ
′ l′]

By Type Preservation and Type Rule either the TAs or TAsCapsule typing rule applied. In either
case, by Ref Type we have that µ′ ≤ mut only if µ ≤ mut. As we haven’t introduced any other reference
or modified any memory, we must have that l is now mutatable through µ′ l′. But them µ′ ≤ mut and
so µ ≤ mut, and hence l was already mutatable through µ l, a contradiction.

• Suppose that the call/call mutator rule was applied, i.e. we have some Ev with
e = Ev[µ0 l0.m(µ1 l1, ..., µn ln)], σ′ = σ, and e′ ∈ {e′′ asµ′′, M(l0; e′′ asµ′′; (read l0).invariant())},
e′′ = e′′′[this := µ′

0 l0, x1 := µ′
1 l1, ..., xn := µ′

n ln], and Cσ
l0

= µ′
0 methodT m(µ′

1 _x1, ..., µ
′
n _xn) e′′′. As

we haven’t modified memory, for this reduction to have made l mutatable, we must have introduced a
mut or capsule reference in e′′. By our well-formedness rules on method bodies, there are no references
in e′′′, thus l must be mutatable through one of the µ′

i li references we substituted into e′′′, for some
i ∈ [1, n], where µ′

i ≤ mut. By Type Preservation and Method Type, we have that µi ≤ µ′
i, and so

µi ≤ mut and hence e already had a reference, µi li, through which l was mutatable, a contradiction.

• Otherwise, the try enter, monitor exit, try ok, or try error rule was applied. However,
memory was not modified, and no new references where added to the main expression, thus we can’t
have caused mutatable to now hold, a contradiction.

In the inductive case, we have n = k+1 and σ|e →k σk|ek → σ′|e′. By the inductive hypothesis we have
not mutatable(σk, ek, l). We clearly have l ∈ dom(σk), as no reduction rule removes from memory, thus by
the base case for n = 1, we have not mutatable(σ′, e′, l), as required.

Similar to Stronger Mut Consistency, we prove a stronger version of Non-Mutating.
Corollary 3 (Stronger Non-Mutating).

If ⊢ σ, σ; ∅ ⊢ e : T , l ∈ dom(σ), not mutatable(σ, e, l), and σ|e →∗ σ′|e′, then σ′(l) = σ(l)

Proof. The proof is the same as for Non Mutating in Appendix A, except we use Stronger Mut Consistency in-
stead of Mut Consistency and use Type Preservation, Type Rule, and the TUpdate rule instead of Mut Update.

Requirement 3 (Mut Consistency).
If validState(σ,E [e]), l ∈ dom(σ), not mutatable(σ, e, l), and σ|e →∗ σ′|e′, then not mutatable(σ′, e′, l).

Proof. By Valid Type we have ⊢ σ and σ; ∅ ⊢ e : T for some type T , and so the conclusion holds by
Stronger Mut Consistency.

Now the hardest requirements to prove: Imm Consistency and Capsule Consistency. We need to prove
these simultaneously as a capsule can be used where an imm is expected, and our TAsCapsule typing rule
allows the use of imm local variables.
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Theorem 6 (Imm–Capsule Consistency).
If validState(σ, e), then ∀l:
1. if immutable(σ, e, l), then not mutatable(σ, e, l), and
2. if e = E [capsule l], then encapsulated(σ,E , l).

Proof. We prove this by definition of validState and induction on the number of reductions since the initial
main expression and memory. The base case is trivial since the main expression cannot contain any imm
references, and there are no fields in memory, thus nothing can be immutable, moreover the main expression
cannot contain any capsule references.

In the inductive case we assume that our theorem holds for all previous states, we then pick an arbitrary
l and prove the two conclusions for the current σ|e.

1. First we show that Imm Consistency holds. If l was previously immutable, by the inductive hypothesis
and Mut Consistency, l is still not mutatable, as required.

Now suppose that l was not immutable in the previous state, but is now. We then proceed by cases
on the reduction rule applied and show that l is now not mutatable:

• (as) σ|Ev[µ l′ asµ′] → σ|e, where e = Ev[µ
′ l′]. Since l was not immutable in Ev and we haven’t

modified memory, the only way it could now be immutable is if µ′ = imm and l ∈ ROG(σ, l′).
By Valid Type, we must have that µ l asµ′ was well-typed by TAs (and not TAsCapsule, as
µ′ ̸= capsule), thus µ ≤ imm. Clearly µ ̸= imm, since l was not immutable. Thus by defi-
nition of ≤, we have that µ = capsule. Since l ∈ ROG(σ, l′), and l was not immutable, by
Immutable ROG, we have mutatable(σ,Ev[capsule l′ asµ′], l). By the inductive hypothesis, we
have encapsulated(σ,Ev[□ asµ′], l′), and so it follows that not reachable(σ,Ev, l). Thus, we have l
is not reachable in Ev[µ

′ l′] except through µ′ l′, but µ′ = imm, so it follows that l is not mutatable
in Ev[µ

′ l′].
• (new/new true) σ′|Ev[new C(µ1 l1, ..., µn ln)] → σ|e, where σ = σ′, l0 7→ C{l1, ..., ln}, e = Ev[e

′],
and e′ ∈ {M(l0; mut l0; (read l0).invariant()), mut l0}. By Valid Type, new C(µ1 l1, ..., µn ln) was
typed by TNew and so we have class C implements _ {Fs;_}, where Fs = κ1 _ f1, ..., κn _ fn.
Since l was not immutable in σ′ through Ev, and existing objects in σ′ have not been modified,
it follows that l must be immutable through e′. As the only object mentioned in e′ is l0, we
have l ∈ ROG(σ, l0). As we haven’t modified preexisting objects and imm l0 /∈ e′, it follows that
we have some i ∈ [1, n] with κi = imm and l ∈ ROG(σ, σ[l0.fi]) = ROG(σ, li). By Valid Type
and the TNew typing rule, we have µi ≤ κ̃i = imm. Thus, as with the as case above, we have
µi = capsule, and by Immutable ROG, we have that l was mutatable. Thus, by the inductive
hypothesis, we have that l was previously reachable only through the µi li argument of the new.
Thus l is not reachable through any l0.fj with j ̸= i, and so it follows that l is reachable in σ|Ev[e

′]
only through l0.fi; as fi is an imm field, it follows that l is not mutatable.

• (access) σ|Ev[µ l′.f ] → σ|e, where e = Ev[µ::κσ[l
′.f ]] and Cσ

l′.f = κ_ f . As we have not
modified memory, it follows that l is immutable through the newly introduced reference to σ[l′.f ].
As l was not previously immutable and the main expression already contained µ l′, it follows that
l is not in the ROG of any imm fields that are reachable through l′. Thus the only way l is now
immutable is if we just introduced an imm reference to it, i.e. if l = σ[l′.f ] and µ::κ = imm. By
definition of µ::κ, we have that either µ = imm or κ = imm. In the former case, imm l would be in
the main expression, in the latter case, l would be reachable through an imm field of µ l; either
way l must have been immutable, a contradiction.

• (update) σ′|Ev[µ l′.f = µ′ l′′] → σ|e, where σ = σ′[l′.f = l′′] and
e = Ev[M(l′; mut l′; (read l′).invariant())]. As we haven’t introduced any imm references to the
main expression, any only σ′[l′.f ] was modified, it follows that for l to now be immutable we must
have C.f = imm _ f and l ∈ ROG(σ, l′′).

Suppose l /∈ ROG(σ′, l′′). The only difference between σ and σ′ is at l′.f . And so l must have
been added to the ROG of l′′ through the new value of l′.f , i.e. σ[l′.f ]. But as no other part of
σ′ was modified, we must have l ∈ ROG(σ′, σ[l′.f ]), but σ[l.f ] = l′′, a contradiction.
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Thus l ∈ ROG(σ, l′′). So by the as case above, we have µ′ = capsule, and by Immutable ROG,
we have that l was mutatable. Thus by the inductive hypothesis, we have that l was previously
reachable only through µ′l′′. Thus l is now reachable only through σ[l′.f ], which is an imm field,
and so l is not mutatable.

• (call/call mutator) σ|Ev[µ0 l0.m(µ1 l1, ..., µn ln)] → σ|e, where e = Ev[e
′], e′ ∈ {e′′ asµ′′,

M(l0; e′′ asµ′′; (read l0).invariant())}, e′′ = e′′′[this := µ′
0 l0, x1 := µ′

1 l1, ..., xn := µ′
n ln], and

Cσ
l0
= µ′

0 methodµ′′ _m(µ′
1 _x1, ..., µ

′
n _xn) e′′′. By our well-formedness rules on method bodies,

there are no locations in e′′′, thus the only references in e′′ are µ′
0 l0, ..., µ

′
n ln. By definition of

immutable, and since we have not modified memory, it follows that for some i ∈ [1, n], l ∈
ROG(σ, li) and µ′

i = imm. As with the as case above, by Valid Type and the TCall typing rule,
we have that µi = capsule, moreover, by Immutable ROG, l ∈ MROG(σ, li). By the inductive
hypothesis we have that li was encapsulated and so it follows that l is not reachable from Ev, or
through any lj with j ̸= i. As the only occurrences of li in e′′ have reference capability µ′

i = imm,
we have that l is not mutatable in e′′. The only reference to li that could be in e′ but not in e′′ has
reference capability read, and so l is not mutatable in e′ either. Finally, since l is not reachable
in Ev, it follows that l is not mutatable in Ev[e

′].

• (try enter/try ok/try error/monitor exit) σ|e′ → σ|e. These rules do not modify mem-
ory, nor introduce or change references in the main expression, except perhaps by removing them,
i.e. for any v ∈ e, we have v ∈ e′. Thus there is no way we could have made l immutable, a
contradiction.

2. Now we show that Capsule Consistency holds, by assuming it does not, and then showing a contradiction.
Thus we suppose that e = E [capsule l], for some E where encapsulated(σ,E , l) doesn’t hold.

Thus we pick an l′ ∈ ROG(σ, l) with mutatable(σ,E [capsule l], l′) and reachable(σ,E , l′). We now
proceed by cases on the reduction rule we just applied, and show a contradiction, thus proving that l
must in fact be encapsulated :

• (new/new true) σ′|Ev[e
′′] → σ|E [capsule l], where σ = σ′, l0 7→ C{ls}, E [capsule l] = Ev[e

′],
e′ ∈ {M(l0; mut l0; (read l0).invariant()), mut l0}, and e′′ = new C(vs).

– Suppose E is of form Ev[E ′
], i.e. the hole in E is within e′. But there are no capsules in e′,

a contradiction.
– Otherwise, E is not of form Ev[E ′

], i.e. the hole in E is within Ev, and so capsule l ∈ Ev and
e′ ∈ E . As we didn’t modify Ev, this capsule l must have been in the previous state, i.e. we
have some E ′ with Ev[e

′′] = E ′
[capsule l] and e′′ ∈ E ′ (since the hole in E is not within the hole

in Ev). By No Dangling, l ∈ dom(σ′), and since we didn’t modify any preexisting objects, we
have ROG(σ, l) = ROG(σ′, l). By the inductive hypothesis, we have encapsulated(σ′,E ′

, l),
and by Mut Consistency, we have mutatable(σ′,E ′

[capsule l], l′), and since l′ ∈ ROG(σ, l), it
follows that not reachable(σ′,E ′

, l′).

Suppose l′ is reachable through the part of Ev that overlaps with E , then there is some l′′ ∈ Ev

with l′ ∈ ROG(σ, l′′). By No Dangling, l′′ ∈ dom(σ′), and since preexisting memory wasn’t
modified, it follows that l′ ∈ ROG(σ′, l′′); since l′′ is in the part of Ev that overlaps with E ,
which is identical to the part of Ev that overlaps with E ′, we have l′′ ∈ E ′, and so we have
reachable(σ′,E ′

, l′), a contradiction

Otherwise, l′ is reachable through e′, clearly l′ ∈ dom(σ′), and so by Lost Forever, we have
reachable(σ′, new C(vs), l′). But new C(vs) ∈ E ′, and so we also have reachable(σ,E ′

, l′),
which is still a contradiction.

Note that the above steps do not depend on the actual forms of e′ and e′′, nor the reduction
rule applied, they only require validState(Ev[e

′′]), σ′|e′′ → σ|e′, ROG(σ, l) = ROG(σ′, l), and
Ev[e

′] = E [capsule l], where E is not of form Ev[E ′′
].

• (access) σ|Ev[µ l′′.f ] → σ|E [capsule l], where E [capsule l] = Ev[µ::κσ[l
′′.f ]].
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– Suppose E = Ev, so capsule l = µ::κσ[l′′.f ]: By definition of µ::κ, this means that µ =
capsule, and so by the inductive hypothesis, we have encapsulated(σ,Ev[□.f ], l′′). Since
l′ ∈ ROG(σ, l) and l = σ[l′′.f ], it follows that l′ ∈ ROG(σ, l′′). Since l′ is mutatable in
Ev[capsule l], by Mut Consistency, l′ is also mutatable in Ev[capsule l′′.f ]. Thus, since l′′ was
encapsulated and l′ ∈ ROG(σ, l′′), it follows that l′ is not reachable through Ev[□.f ]. Clearly
this means l′ is not reachable through Ev, a contradiction.

– Otherwise, capsule l ∈ Ev, and so by the new/new true case above, we have a contradic-
tion.

• (update) σ′|Ev[µ l′′.f =µ′ l′′′] → σ|E [capsule l], where σ = σ′[l′′.f = l′′′] and E [capsule l] =
Ev[M(l′′; mut l′′; (read l′′).invariant())]. Clearly capsule l ∈ Ev, since there are no capsules in
the monitor we just reduced to. As the reduction didn’t modify Ev, have Ev[µ l′′.f =µ′ l′′′] =
E ′
[capsule l], for some E ′, with µ l′′.f =µ′ l′′′ ∈ E ′. By the inductive hypothesis, we have

encapsulated(σ′,E ′
, l). By Valid Type and our TUpdate typing rule, we have µ = mut.

Suppose l′′ ∈ ROG(σ′, l), then since µ = mut, we have mutatable(σ′,E ′
[capsule l], l′′), and so it

follows from encapsulated(σ′,E ′
, l) that not reachable(σ′,E ′

, l). But µ l′′.f = v ∈ E ′, and so l′′ is
clearly reachable in E ′, a contradiction.

Thus we must have l′′ /∈ ROG(σ′, l). As σ only differs from σ′ at l′′, and l′′ /∈ ROG(σ′, l),
it follows that the ROG of l can’t have changed, i.e. ROG(σ, l) = ROG(σ′, l). Thus, by the
new/new true case above, we have a contradiction.

• (call/call mutator) σ|Ev[µ0 l0.m(µ1 l1, ..., µn ln)] → σ|E [capsule l], where E [capsule l] = Ev[e
′],

e′ ∈ {e′′ asµ′′, M(l0; e′′ asµ′′; (read l0).invariant())}, e′′ = e′′′[this := µ′
0 l0, x1 := µ′

1 l1, ..., xn :=
µ′
n ln], and Cσ

l0
= µ′

0 methodµ′′ _m(µ′
1 _x1, ..., µ

′
n _xn) e′′′.

– Suppose E = Ev[E ′′
] for some E ′′, thus E ′′

[capsule l] = e′. Clearly capsule l ∈ e′′, and by our
well-formedness rules on method bodies, capsule l /∈ e′′′. Thus we must have some i ∈ [0, n]
with µ′

i li = capsule l. Moreover, if we let x0 = this, then this means that e′′′ = E ′′′
[xi],

for some E ′′′. By Method Type, we have µi ≤ µ′
i, and since µ′

i = capsule, we also have
µi = capsule. If i ≥ 1, let E ′

v = µ0 l0.m(µ1 l1, ..., µi−1 li−1,□, µi+1 li+1, ..., µn ln); if i = 0,
let E ′

v = □.m(µ1 l1, ..., µn ln). Clearly we have σ|Ev[E ′
v[capsule l]] → σ|E [capsule l]. Thus,

by the inductive hypothesis we have encapsulated(σ,Ev[E ′
v], l). By Mut Consistency, we have

that l′ was mutatable, and since l′ ∈ ROG(σ, l), it follows that l′ is not reachable through
Ev, or any µj lj with j ̸= i.

If i = 0, since µ′
i = capsule and i = 0, the method was not a rep mutator, and so the call

(and not call mutator) rule must have applied, thus e′ = e′′ asµ′′, and so l′ is reachable
only through e′′.

Otherwise, if i ≥ 1, regardless of whether call or call mutator was applied, as l′ is not
reachable through l0, l′ can only be reachable through e′′.

Thus by our well-formedness rules on method bodies, we must have that l′ is only reachable
through each occurrence of xi ∈ e′′′, which have all been substituted with µ′

i li (since there
are no other references in e′′′, and l′ is not reachable through any xj that has been substituted
for µ′

j lj). As our type system requires that each method body mentions a capsule receiver
or parameters at most once, it follows that xi /∈ E ′′′. Since E ′

= E ′′′
[x0 := µ′

0 l0, ..., xn :=
µ′
n ln] asµ′′, it follows that l′ is not reachable through E ′. Thus l′ was not reachable through

Ev either, and so it follows that l′ is not reachable through E , a contradiction.
– Otherwise, capsule l ∈ Ev, and so by the new/new true case above, we have a contradic-

tion.
• (as) σ|Ev[µ l′′ asµ′] → σ|e, where e = Ev[µ

′ l′′].
– Suppose E = Ev, and so µ′ l′′ = capsule l. This part of the proof is the most complex, as

we need to use that fact that µ l′′ is the result of reducing an expression that was originally

69



typed under Γ̂. Thus we need to reason over the entire reduction sequence starting from
when the as was initially introduced into the main expression, moreover, the Γ̂ typing does
not actually prevent the as from originally containing mut references, rather it only restricts
how the body of the as can use them.

∗ Let σ0 and e0 be such that σ0|Ev[e0 as capsule] is the earliest state in our reduction where
σ0|e0 →∗ σ|µ l as capsule. Thus, σ0|e0 as capsule is the state our µ l as capsule expression
was in before its body began reduction. By definition of validState and our reduction
rules we must have had that the e0 as capsule expression was introduced by a method
call.

∗ Thus there is some σ′
0, m, l0, ..., ln, and E ′

v, where E ′
v ∈ Ev and we have a reduction

sequence σ′
0|_ l0.m(_ l1, ...,_ ln) → σ′

0|E1[e0 as capsule] →∗ σ0|E ′
v[e0 as capsule]. By our

call and call mutator reduction rules, this e0 as capsule expression must have come
from the method body. Let x0 = this and C0 = C

σ′
0

l0
, then we have some e′0 and E2 with:

C0.m = µ0 method _m(µ1 C1 x1, ..., µn Cn xn)E2[e
′
0 as capsule], and

e′0[x0 := µ0 l0, ..., xn := µn ln] = e0.
By our well-formedness rules on method bodies and the Nested Type lemma, we have
∅; Γ ⊢ e′0 as capsule :: capsuleC, where Γ = µ0 C0 7→ x0, ..., µn Cn 7→ xn, for some C.

Suppose the typing rule used to get ∅; Γ ⊢ e′0 as capsule :: capsuleC was TAs, then we
have ∅; Γ ⊢ e′0 : capsuleC. So by Valid Type, Method Type, and Substitution we have ⊢ σ′

0

and σ′
0; ∅ ⊢ e0 : capsuleC, thus by Type Preservation we have µ = capsule, and by the

inductive hypothesis, we have encapsulated(σ,Ev[□ as capsule], l), and so clearly we also
have encapsulated(σ,E , l), a contradiction.

Thus the TAsCapsule type rule must have applied, and so ∅; Γ̂ ⊢ e′0 : mutC. Consider
each i ∈ [0, n], we have Γ̂(xi) = µ̂i Ci, and by Valid Type and Method Type we have C

σ′
0

li
≤

Ci. Now note that e′0[x0 := µ̂0 l0, ..., xn := µ̂n ln] = e′0[x0 := µ0 l0, ..., xn := µn ln][µ0 l0 :=
µ̂0 l0, ..., µn ln := µ̂n ln] = ê0, this holds since by our well-formedness rules on method
bodies, there are no ls in e′0. Thus by Substitution, we have σ0; ∅ ⊢ ê0 : mutC, moreover,
by Valid Type, we have ⊢ σ0.

∗ Now consider any l1 and l2 with mut l1 ∈ e0 and l2 ∈ ROG(σ0, l1).

Suppose mutatable(σ0, ê0, l2), then since ê0 contains no mut references, it follows that
there is some E3 and l3 with e0 = E3[capsule l3]. By the inductive hypothesis, we have
encapsulated(σ0,E3, l3). Since l2 is clearly mutatable in E3, it follows that l2 is not
reachable in E3. But mut l1 ∈ E3, and l2 is reachable through l1, a contradiction.

Thus we have not mutatable(σ0, ê0, l2). Clearly e0 ∼ ê0, and since σ0|e0 →∗ σ|µ l, by
Bisimulation, there is some µ′′ such that σ0|ê0 →∗ σ|µ′′ l. Then, since we don’t have
mutatable(σ0, ê0, l2), and since ⊢ σ0 and σ; ∅ ⊢ ê0 : mutC, by Stronger Non-Mutating, we
have σ(l2) = σ0(l2).

Suppose l2 ∈ MROG(σ, l). Since tyr[σ0]ê0mutC, by Type Preservation it follows that µ′′ ≤
mut and hence mutatable(σ, µ′′ l, l2). But σ0|ê0 →∗ σ|µ′′ l and not mutatable(σ0, ê0, l2),
so by Stronger Mut Consistency we have not mutatable(σ, µ′′ l, l2), a contradiction.

Thus we must have l2 /∈ MROG(σ, l).

∗ Now consider any l4 where reachable(σ0,Ev, l4).

Suppose σ0(l4) ̸= σ(l4). By Non Mutating, we must have some µ′′′, l5, and E4 with
e0 = E4[µ

′′′ l5], l4 ∈ MROG(σ0, l5), and µ′′′ ≤ mut. By the above, if µ′′′ = mut, then
σ0(l4) = σ(l4), a contradiction. Hence µ′′′ = capsule, and by the inductive hypothesis,
we have that encapsulated(σ0,Ev[E4], l5). Thus, since l4 is mutatable through µ′′′ l5, we

70



can’t have reachable(σ0,Ev[E4], l4), a contradiction.

Thus we must have σ0(l4) = σ(l4).

∗ By the above, reduction cannot have modified memory in such a way as to make something
reachable in σ|Ev that was not previously reachable in σ0|Ev. As reachable(σ,Ev, l

′), it
follows that reachable(σ0,Ev, l

′) and l′ ∈ dom(σ0). Since mutatable(σ,Ev[capsule l], l′),
by Mut Consistency, we have mutatable(σ0,Ev[e0], l

′). Since l′ ∈ ROG(σ, l), it follows that
reachable(σ, µ l, l′) and so by Lost Forever we have some µ′′′′ l′′ ∈ e0 with l′ ∈ ROG(σ0, l

′′).

Suppose µ′′′′ = capsule. By the inductive hypothesis, we have encapsulated(σ0,Ev[E ′
], l′′),

where E ′
[capsule l′′] = e0. Since mutatable(σ0,Ev[e0], l

′), from definition of encapsulated ,
we have not reachable(σ0,Ev[E ′

], l′), and hence not reachable(σ0,Ev, l
′). By the above,

we can’t have mutated anything reachable from Ev, so there is no way we could have
made reachable(σ,Ev, l

′) hold, a contradiction.

Suppose µ′′′′ = mut. Since l′ ∈ ROG(σ0, l
′′) and mut l′′ ∈ e0, by the above l′ /∈

MROG(σ, l′′). Moreover, by the above we have ROG(σ0, l
′′) = ROG(σ, l′′), so by Im-

mutable ROG, we have immutable(σ,Ev[capsule l], l′). Thus by the above Imm Consistency
part of the proof, we have not mutatable(σ,Ev[capsule l], l′), a contradiction.

Suppose µ′′′′ = imm. Thus immutable(σ0,Ev[e0 as capsule], l′), and by the inductive hy-
pothesis, we have not mutatable(σ0,Ev[e0 as capsule], l′). Since σ0|Ev[e0 as capsule] →∗

σ|Ev[capsule l], by Mut Consistency, we have not mutatable(σ,Ev[capsule l], l′), a contra-
diction.

Otherwise, µ′′′′ = read. If l′ is in the ROG of any non-read reference in e0, then one of
the above cases applies, and we would have a contradiction. If l′ was in the ROG of any
imm field in the ROG of l′′, then immutable(σ0,Ev[e0 as capsule], l′) would hold, and by
the case for µ′′′′ = imm above, we would also have a contradiction. Thus, l′ must only be
reachable through read references in e0, and not through any imm fields. We now show that
the body of the as expression never obtains a non-read reference to l′, and so it cannot
possibly store l′ in the ROG of l. By Type Consistency and our typing rules, it follows
that during reduction, a read reference cannot change reference capabilities (because our
TAs, TAsCapsule, and TCall rules prohibit this), read references cannot be stored
on the heap (our TUpdate rule prohibits this), and each field access on a read reference
produces a read or imm reference (by definition of the access reduction rule). But, l′ isn’t
in the ROG of any imm fields in σ0, so if a field access on a read reference in σ0 returns
an imm, then l′ is not reachable through the result of said access (by the access rule).
Moreover, as we cannot store a read on the heap, during the reduction σ0|e0 →∗ σ|µ l,
l′ will never enter the ROG of an imm field, and so will never become reachable through
an imm reference. Thus we have that at each step of our σ0|e0 →∗ σ|µ l reduction: either
l′ is not reachable, or it is reachable only through read references. By Valid Type and
our TAs and TAsCapsule rules, we have that µ ̸= read, hence l′ cannot be reachable
through µ l. But we assumed that l′ ∈ ROG(σ, l), a contradiction.

– Otherwise, capsule l ∈ Ev, and so by the new/new true case above, we have a contradic-
tion.

• (try enter/try ok/try error/monitor exit) σ|e′ → σ|E [capsule l]. These rules do not
modify memory, introduce references in the main expression, nor change their reference capa-
bilities. Thus it follows that e′ = E ′

[capsule l], for some E ′. Furthermore, by the inductive
hypothesis, we have encapsulated(σ,E ′

, l), and by Mut Consistency, we have mutatable(σ, e′, l′),
and so it follows that l′ is not reachable in E ′. But these reduction rules do not introduce any
references, duplicate them, nor modify memory since, thus as l′ is reachable in E , it follows that
l′ is reachable in E ′, a contradiction.
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The above theorem allows us to now directly prove the Imm Consistency and Capsule Consistency require-
ments themselves.
Requirement 2 (Imm Consistency).

If validState(σ,E [e]) and immutable(σ, e, l), then not mutatable(σ, e, l).
Proof. By definition of immutable it follows that l is immutable in E [e], thus by Imm–Capsule Consistency
we have that l is not mutatable in E [e]. By definition of mutatable, it follows that l is not mutatable in e
either.

Requirement 4 (Capsule Consistency).
If validState(σ,E [capsule l]), then encapsulated(σ,E , l).

Proof. Follows immediately from Imm–Capsule Consistency.

Finally, we prove Strong Exception Safety, in a manner similar to how we proved the as case for Capsule
Consistency.
Requirement 6 (Strong Exception Safety).

If validState(σ′,Ev[tryσ{e} catch {e′}]), then ∀l ∈ dom(σ), if reachable(σ,Ev[e
′], l), then σ(l) = σ′(l).

Proof. By definition of validState and our well-formedness rules on method bodies, we must have some e0,
and e′0 with validState(σ,Ev[try {e0} catch {e′0}]) and σ|try {e0} catch {e′0} → σ|tryσ{e0} catch {e′0} →∗ σ′ |
tryσ{e} catch {e′}. By our grammar for Ev and our reduction rules we also have σ|e0 →∗ σ′|e and e′0 = e′.
By Valid State we have that the TTryCatch1 typing rule applied, and hence σ; ∅ ⊢ try {e} catch {e′} : T ,
σ; ∅ ⊢ e0 : T , and σ; ∅ ⊢ e′ : T , for some T . By definition of validState and our reduction rules we must have
had that the try {e0} catch {e′0} expression was introduced by a method call.

Thus there is some σ′′, m, and l0, ..., ln, where σ′′|_ l0.m(_ l1, ...,_ ln) → σ′′|E [try {e0} catch {e′0}] →∗

σ|E ′
v[try {e0} catch {e′0}], where E ′

v ∈ Ev. Let x0 = this and C0 = Cσ′′

l0
, then by our call/call mutator

rules we have some e1, e′1, and E ′ with C0.m = µ0 method _m(µ1 C1 x1, ..., µn Cn xn)E ′
[try {e1} catch {e′1}]]

and e1[x0 := µ0 l0, ..., xn := µn ln] = e0. By Nested Type and our well-formedness rules on method bodies,
we have that ∅; Γ ⊢ try {e1} catch {e′1} :: T ′ holds, for Γ = µ0 C0 7→ x0, ..., µn Cn 7→ xn, for some T ′.
Clearly the TTryCatch1 typing rule was used, and so we have σ; Γ̂ ⊢ e1 : T ′. As with the as case in
the Capsule Consistency part of the Imm–Capsule Consistency proof above, we have e1[x0 := µ̂0 l0, ..., xn :=

µ̂n ln] = ê0, where for each i ∈ [0, n] we have Γ̂(xi) = µ̂i Ci. Thus by Valid Type and Method Type, we we
have C

σ′
0

li
≤ Ci, and by Substitution we have σ; ∅ ⊢ ê0 : T ′.

Now let l ∈ dom(σ) with reachable(σ,Ev[e
′], l). If we don’t have reachable(σ, e0, l), then by Lost Forever,

the reduction σ|e0 →∗ σ′|e cannot involve an update on l, i.e. we must have σ′(l) = σ(l).
Suppose l is mutatable through a capsule reference, i.e. we have some E ′′, l′, and l′′, with l′ ∈ ROG(σ, l),

e0 = E ′′
[capsule l′′], and l′ ∈ MROG(σ, l′′). Clearly we also have mutatable(σ,Ev[tryσ{e0} catch {e′0}], l),

and since validState(σ,Ev[tryσ{e0} catch {e′0}]), it follows from Capsule Consistency, that we do not have
reachable(σ,Ev[tryσ{E} catch {e′0}], l). But this implies not reachable(σ,Ev, l), and since e′0 = e′, not
reachable(σ, e′, l) holds. Thus we have not reachable(σ,Ev[e

′
0]), a contradiction.

Therefore, l is not mutatable through any capsule reference in ê0, since such a reference would be in e0,
which yields a contradiction.

Since ê0 has no mut references, it follows that not mutatable(σ, ê0, l). Clearly e0 ∼ ê0, and since ê0
σ|e0 →∗ σ′|e, by Bisimulation, there is some e′′ such that σ|ê0 →∗ σ′|e′′. Moreover, by Valid Type, ⊢ σ.
Thus since σ; ∅ ⊢ ê0 : T ′ holds and not mutatable(σ, ê0, l), by Stronger Non-Mutating, we have σ(l) = σ′(l),
as required.
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