
PLATEAU
13th Annual Workshop at the
Intersection of PL and HCI

DOI: 10.35699/1983-
3652.yyyy.nnnnn

Organizers:
Sarah Chasins, Elena
Glassman, and Joshua
Sunshine

This work is licensed under a
Creative Commons
Attribution 4.0 International
License.

A Comparative Study of Traditional versus
Capability-Based Module Systems for Modern
Programming Languages
Abhaas Goyal 1, Alex Potanin 2 and Jonathan Aldrich 3

1, 2Australian National University, Australia
3Carnegie Mellon University, USA

Abstract
The principle of least privilege serves as an essential guideline in designing secure computing systems. However,
implementing this in real-world systems through various programming languages has proved to be difficult and
has allowed for many vulnerabilities in privilege escalation. One proposed solution is to have capability-based
security primitives in programming languages for modules and objects. A capability is a unique token that
provides the authority to perform a specific set of actions on a selected resource. However, its effectiveness
as a language design choice for real-world applications remains to be seen.

To answer this question, we designed a comparative study to compare programmer productivity, security of
the designs, and extensibility of packages in capability-based module systems vs. others. Our main goal was
to determine whether module systems/packages having capabilities from the ground up provide usability and
security advantages compared to their absence. The study used two programming languages - one with object
capabilities (Wyvern) and the other with support for capabilities via external libraries (Rust).

Preliminary findings show that programs designed in Wyvern provided higher security guarantees in some
cases, and users found using object capabilities an easy-to-use secure abstraction layer for managing critical
resources. However, a lack of tooling for showing appropriate errors or code completion introduced challenges
in writing code. Hence, future work requires a more in-depth study to define and validate current user-centric
methods of designing capability-based languages. Further work also involves classifying security vulnerabilities
solved by capabilities and building the necessary tools in Wyvern to make capabilities more viable as a design
choice in programming languages.

Keywords: Object Capabilities. Language-based Security. Module Systems. Rust. Wyvern.

1 Introduction
A rise of sophistication in cyber-security attacks has led to increased research in language-based
security [1], which attempts to provide computer security for applications at an architectural level.
One of the core principles to follow in their designs is the principle of least privilege - which states
that every user and process should be provided with minimal authority over the underlying system
resources.

Initial attempts to achieve authority control in systems centered around two symmetric approaches.
[2] The first was the identity-centric model, which was implemented using access-control lists. The
other one was the authority-centric model known as capabilities, which kept designation and authority
together. The former became the industry standard for various historical reasons leading to myths
around using capabilities in production systems [3].

The Open Worldwide Application Security Project (OWASP) provides a regularly updated list
of the top 10 list of ”most critical security risks faced by organizations in web applications” [4].
Within the list, Broken Access Control has been put at the number one spot [5]. Several subsets
of vulnerabilities exist within this category- such as Execute Code, Directory Traversal, and Gaining
Privilege. Recently, research into capabilities has been re-assessed as a potential solution by the
research community. Capabilities have been implemented in a wide variety of contexts, such as
standard library packages in various programming languages ([6]–[8]), Operating Systems such as sel4
[9], and even in hardware architectures [10].

In addition to building capability-based systems based on libraries, we can design programming
languages that use capabilities from the ground up to design secure programs. In the past, this

1/13

https://orcid.org/0009-0008-5333-7324
https://orcid.org/0000-0002-4242-2725
https://orcid.org/0000-0003-0631-5591

has been attempted both in older languages such as E [11] and Newspeak [12], as well as modern
languages such as Pony [13] and Wyvern [14].

However, it remains to be seen whether regular software developers can use capability-based lan-
guages in teams to design applications and the effect of doing so on introduced security vulnerabilities,
compared with a library-based approach. To answer this question, we frame the following research
questions for the project:
1. RQ1: How usable are capability-based languages when designing an architecture?
2. RQ2: What security vulnerabilities do programmers expose when designing resource-critical ob-

jects?
To answer these questions, we set up a comparative study between two languages - one with

object capabilities (Wyvern) and the other with support for capabilities via external libraries (Rust).
The two languages were chosen based on the following parameters:
Reasons to choose Wyvern
1. Provides a capability-based module-system with formalized authority-control [15]. Here, system

resources are represented as object capabilities and must explicitly be passed as arguments, limiting
access to certain system resources. This feature will help us to design a multi-tiered architecture
while controlling security in each layer.

2. Domain-specific syntax support within the language provides good support for embedding other
languages (such as in the case of web development HTML/SQL), so users can have an easier time
designing architecture with high safety/security properties.

3. A potential future scope of the Wyvern project lies in studying the usability and security of Effect
Systems in conjunction with capabilities. A comparable language is Koka [16], but it’s effect system
does not have a focus on security since it does not support the principle of information hiding.

Reasons to choose Rust
1. In terms of choosing a capability library among modern languages, the Rust library was found to be

the most stable. (Object-Capabilities in Scala [7] was another candidate but the library is currently
in beta).

2. Considered as the most loved language on Stack Overflow [17], so a strong case for increasing
future user adoption rates.

3. Supports multiple paradigms of programming, such as imperative and functional programming,
which increases suitability for getting more users for the study.

4. Systems language with a strong type system, known to be secure due to ownership, so it would be
interesting to see security vulnerabilities arising from using this language.
Our findings are in their preliminary stages. They show that programs designed in Wyvern provided

higher security guarantees, and users found that object capabilities provided an easy-to-use yet a secure
abstraction layer for critical resource management. However, a lack of tooling for showing appropriate
errors or code completion introduced ease of use challenges when writing programs. Informed by these
findings, future work is required primarily in designing a more in-depth study to understand the user-
centric methods needed to design capability-based languages. Further work also involves classifying
security vulnerabilities solved by capabilities and building the necessary static analysis tools/debugging
aids in Wyvern to make capabilities more viable as a design choice in programming languages.

2 Background and Related Work
We provide a background on the motivation for using capability-based design and a sample capability
pattern used in one of the study designs.

2.1 Capabilities: Motivation
To start with why we need capabilities, we first need to look at the Confused deputy problem [18].
In Figure 2, Bob acts as the deputy and is deemed trustworthy by every other entity (hence the
term “deputy”). He is communicating with Alice and Carol. Alice then provides Bob with a sensitive
resource (in this case /etc/passwd with specific permissions) and trusts Bob enough not to pass the
sensitive resource to Carol. The question then arises whether Carol can ”trick” Bob into access to the
underlying resource, thus leading to broken access control. Currently, many real-world vulnerabilities
are present in this class (due to ambient authority) with common examples being Cross-Site Request

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 2/13

Figure 1. Legend for various entities
in object-capability diagrams

Figure 2. The Confused Deputy Problem represented as a
Granovetter Diagram [18]

Forgery (CSRF) [19] and VSCode extensions ([20]).
However, Rust provides module systems that don’t have ambient authority, for which one could

argue that these bugs would not happen in the future (i.e., we consider Bob won’t be pinned as a
reason for broken access control). This further propagates the question of whether capabilities as a
language design choice by itself provide additional advantages.

[18] further discusses object-capabilities security as one of the methods to avoid the confused
deputy problem. Capabilities can be viewed as one of the interpretations of the Granovotter diagram.
It is defined as the following:

If Bob does not have access to Carol (which is a critical resource), he can only gather access to
it from someone else. Let us assume it’s Alice; she can only give the resource to Bob only if:
• Alice already has the authority to Carol object (via a reference)
• Alice has a reference to Bob
• (Key part) Alice decides to voluntarily share the reference to Carol with Bob

Capabilities can be summarised as - ”Don’t separate authority from designation.” [3]. The design
choice in creating programs with capabilities is for a main trusted program to provide the correct
amount of capability (which is implemented as non-forgeable references) to each specific object.

2.2 Capability Patterns: Sealer-Unsealer
According to [21], sealer/unsealer pairs (Figure 3) can be conceptually viewed as similar to pub-
lic/private key pairs. They can be used to control rights to access a certain object as follows:
1. Initialisation The main program creates the sealer/unsealer pair, and passes it to Alice.
2. Sealing the resource Alice invokes seal from a sealer object. Internally, Sealer creates a Sealed

box, and returns it to Alice. This is represented by steps (1)-(3) in Figure 3. Considering that
Alice only has access to the Sealed Box, she can pass it around without having to worry about
others accessing the critical resource.

3. Unsealing the resource However, Alice must be careful with passing the Unsealer around. If she
passes it to another entity (this is acceptable within the design of the language since behavior is
defined in trusted code, and not at runtime), they now have the ability to call unseal and gain
access to the inner object. This is represented by steps (4)-(6) in Figure 3.
This pattern will be used in the study design of Simple Money, which is given in section 4.3.

3 Methodology
To gain insight into the usability of capable and incapable module systems, we set up a qualitative
language usability study. For that, we applied for Human Ethics approval from ANU Research In-
formation Enterprise System [22] for approval. The resulting methodology comprised the following
aspects:
Recruitment Participants were recruited within the School of Computing at the Australian National
University. The method of recruitment was to contact potential participants via email or face-to-face
interaction. Some of the places include:

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 3/13

Figure 3. Sealer-Unsealer Architecture

• Personal/Professional connections
• Face-to-face interactions with club members of the Computer Science Student Association (CSSA)
• Students completing research in programming languages

In recognition of the participant’s time, we renumerated them with a AUD$20 or AUD$30 Westfield
voucher, depending on availability.

Participant Background Programming Experience Task
P1 Parallel Systems 5 years Logger Editor
P2 Systems/Security 7 years Network Pool
P3 Formal Methods 3 years Network Pool
P4 Data Science 5-6 years Simple Money

Table 1. Participant Details

Participants Participants at ANU have been chosen because of close proximity to the place where
the interviews had to be conducted. To maintain an appropriate level of experience and skills for the
pilot study, senior undergraduate/postgraduate students were chosen. The participants should have
the necessary background to be able to solve the proposed problem and answer questions during the
interview time frame. They had chosen from varied backgrounds to get a more representative study
for language designers. Their details are provided in Table 1.

Considering that there are only four participants, the reader may assume a low number of partic-
ipants is a threat to the validity of the result. However, previous successful studies using thematic
analysis have been conducted with only four participants [23], and using think-aloud protocol with six
participants [24]. The papers had the central theme of designing the setup of the study design open-
ended to conduct an in-depth analysis of individual studies; and screening tests of the participants.
Procedure We conducted the study in the format of a semi-structured interview and following the
think-aloud protocol. A set of tasks were designed that can be given to either software architects or
experienced software engineers that involved designing or extending a small product architecture.

We use the think-aloud protocol by building on studies done to understand novice programers’
strategy who had little experience in programming ([24], [25]). They partially apply in our case,
considering the participants have had no experience in Wyvern, and two out of four participants
had prior experience with Rust. However, it should be noted that our pre-screening of participants
requires that they have the appropriate level of knowledge in computer science. [24] also used narrative
analysis, whereas this research project aims to generate results by thematic analysis. [25] is in the
context of developing computational thinking in general; however, our goal is much more specific - to
use computational thinking at a higher abstraction level to design modular architectures.

We asked participants to first use a language with support for modules and object capabilities (e.g.

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 4/13

Wyvern), and then use a more traditional language with external capability libraries (e.g. Rust/Java)
to design the same architecture. Documentation links related to standard capability libraries in Rust
([26]–[28]) were provided as starting points. After this, we asked them to break the security of the
written program itself for any/both languages, to reveal potentially overlooked vulnerabilities.

Finally, we asked post-interview questions consisting of a survey (details of questions are provided
in appendix A). The total length of each study was 90 minutes, with each section having a rough
outline of the overall time distribution:
1. Rust and Wyvern Implementation (60 mins)
2. Trying to break security of the Program (20 mins)
3. Post-study survey (10 mins)

Occasionally, we took notes regarding how the discussion went, and marked points of potential
interest to double down on when conducting thematic analysis. If a student was stuck on a part, we
asked them to explain their thinking process using the think-aloud protocol.
Data Collection The data being collected was personal information about the interviewee’s previous
experience in software development, domain of expertise, and current role. During the interview, the
information being collected was: (a) Screen recording of the desktop environment (b) Audio transcript
(c) A survey at the end of the interview (full-list of questions provided in appendix A).
Analysis Thematic analsysis is now commonly used in the programming languages research community
for various use cases, such as highlighting key challenges in language design [29] and its tooling, and
debugging [23]. The main goals of the referenced studies also apply to our overarching topic of
determining the suitability of a language for a given task.

We conducted a thematic analysis of the code, audio-recorded interview and the post-interview
survey to derive potential hypotheses. The analysis was conducted by keeping two major themes in
mind: The usability of both languages and any Security Vulnerabilities that could have arisen. In our
case, the procedure would look like the following: If one is taking an audio-recorded interview, the
initial step is transcribing the sampled data. Our data sources also consist of screen sharing, so it is
essential to mark points of interest (errors in code, completion, etc.) as well. The next step is to look
for recurring themes from each interview. We follow this up in Section 5.

4 Study Design
The overall study consists of three parts. In each part, we ask participants to implement specific parts
of the architecture using capabilities via external libraries or via module systems in languages. Each
part was designed to primarily test one of the facets of the overall goal (usability, extensibility, and
security); however, all facets were considered in the analysis of each part.

Each study part was divided into three steps for participants - designing the initial architecture,
finding vulnerabilities, and the post-study survey.1

4.1 Logger Editor

Figure 4. Logger Editor

1 Code templates for the studies are available at https://github.com/abhaasgoyal/module-systems/tree/plateau-2024

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 5/13

https://github.com/abhaasgoyal/module-systems/tree/plateau-2024

Purpose To assess the security of participant code, ensuring that authority is non-transitive.
Background In figure 4, the Main application has a Logger module that it can trust. The logger
module has access to FileIO, providing it the authority to read/write to files. However, there also
exists an extension named wordCloud module, which needs to utilize the Logger library to read/write
to a place that only Logger can allow. Here, Main passes Logger when creating wordCloud. The
goal of the user is to design Logger in such a way that WordExt does not have access to the underlying
module fileIO and, in the process, escalate its privilege.

4.1.1 Instructions
Rust Implementation The implementation in Rust was based on the cap-std module [6]. The
implementation should contain the functionalities for the following (note that one can change the
function names in the Extension depending on how the Logger is structured):
• create_logger(logFile: String) - A constructor which returns a new logger object with the name

logFile
• logFile.append_to_log(entry : String) - Append a new entry to the logFile

Given a possibly malicious extension.rs, design the corresponding Logger module with capability
library in Rust.
Wyvern Implementation The extension library is wordCloud, and the users need to design the logger
library from scratch with the appendLog function. Since capabilities are hierarchical here, the users
were given a more open-ended specification of the parameters of the logger library; the solution is
that the underlying fileIO system resource is passed exclusively to the logger from Main.

There was no developer-friendly documentation available for Wyvern’s standard I/O library, so we
provided the implementation, hoping that it will act as self-documenting code. The required method
definitions for fileIO are provided in listing A.2.
Trying to Break security Upon completing the corresponding functions, users were asked to find a
way to bypass the restriction of accessing fileIO in the corresponding programs, while only modifying
Extension.rs (for Rust) and wordCloud module (for Wyvern).

4.2 Network Pool

Figure 5. Network Pool (A dotted circle is the capability to connect to a specific device)

Purpose To assess the ease of developing appropriate implementations from the specification. A high
degree of freedom should be provided in how to design programs.
Goal Firewalls are essential to control incoming and outgoing network traffic. The user has to
implement a basic firewall by making two kinds of network pools that allow an untrusted extension to
use the network in limited ways. The extension promises to only connect to the website example.com.
The architecture can be represented with figure 5. There are two types of pools used in the Extension.
The pools should limit the extension to the following authorities, respectively:
• TCP-Port Only allow connections to an IP address of 93.184.216.14 using a TCP port (0-

65535). For Wyvern, it can be assumed that the IP address is a string of fixed length i.e. it has a
length of 15. For example, 192.68.1.1 is represented as 192.068.001.001

• Net-Port Only allow connections to a small range of IP addresses (but with any port allowed).
The last 8 bits of the IP addresses should be in the range 93.184.216.<0-255>

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 6/13

4.2.1 Instructions
Rust Implementation Within pool_auth.rs, create the respective network pools by looking at the
necessary documentation. Then, call in the Extension by passing in the Pools with the required IP
address and HTTP port in both cases as the input. In this case, the necessary documentation was
regarding Network Pools implementation in capability standard library of Rust [30].
Wyvern Implementation The makePool module should have 4 input parameters - startIp, endIp,
startPort, and endPort. Then, come up with an abstraction of functions for Net-Port and TCP-Port,
which call makePool. This should be within the main function. Finally, the function connect(addr,
port) should consist of a guard which checks whether the addr and port are within the acceptable
range, and connects if the check succeeds.
Trying to Break security This exercise was similar to the Logger-Editor design, but now consid-
ering multiple capabilities that are passed to the Extension. Upon completing the corresponding
functions, try to break the security of the filesystem in the corresponding programs by modifying only
Extension.rs (for Rust) and the cloud module (for Wyvern).

4.3 Simple Money
Note: The design was motivated by the simple money example [21].

Figure 6. Simple Money

Goal Extensibility of adding code to existing codebases.
Background Given a money minter and two purses A and B, design a transaction where user A can
securely send money to user B, using the capability pattern of sealer-unsealer.
Architecture The architecture (figure 6) consisted of the main entity mintMaker, making the Mint
Object, representing a new currency. It has a fixed amount of total balance. It employs the Factory
Pattern to further create two Purse objects, Alice and Bob, which it can initialize with a certain
balance. This is implemented in steps (1)-(2). Now, the question is whether Alice can pay some of
her money to Bob while conserving the total currency. Some of the goals the architecture needs to
achieve [21] are:
• (T1) Only someone with the mint has the power to change the total balance of that currency
• (T2) Purse A cannot change the balance of Purse B
• (T3) Balances should always be positive
• (T4) If a successful deposit gets reported, Alice should be guaranteed that the deposit was made

to the other wallet
4.3.1 Instructions

The participant is given implementations of the Sealer and Unsealer primitives, as well as the Mint
object (steps (1)-(2) in the diagram). The user tasks for both languages were to securely transfer
money via an intermediate Purse Object with the Sealer-Unsealer pattern. The purse should have the
following methods:
1. purse.getBalance(): Int - Get the current balance in the purse
2. sprout(): Purse - Create a new empty purse

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 7/13

3. getDecr(): SealedBox[Int -> void] - Get a sealed version of decr. A hint was provided that should
be used to validate (T4) during a deposit to Bob’s purse. decr is a function that subtracts the
balance in the current Purse

4. dst.deposit(amount:Int,src:Purse):void - Securely transmits money from one wallet to another
5. print():void - (Optional) Print debugging information

The programmer’s expected steps are to understand the respective codebase and extend the
program’s functionality. Instructions were the same for Wyvern and Rust implementation, with slightly
different filenames. They were to implement the architecture above and then come up with potential
vulnerabilities in their implementation.

5 Results
After conducting the study with four participants, we now construct a thematic analysis and derive
hypotheses for each research question.

5.1 RQ1: Usability of capabilities in the language vs. library
5.1.1 Understandability of existing code and Extensibility

(P4) mentioned that understanding the code for Simple Money was highly complicated in Rust, even
though they had past experience. In particular, it was related to dyn keyword and its use in traits.
This proved to be much easier in Wyvern; however, it may be because Wyvern’s implementation
matches better with the original problem in terms of objects. Rust’s implementation of Simple Money
also had all three objects for building objects and their behavior: trait, struct, and impl, which
in general, caused a higher cognitive load for the users. This confused the participant as to how
different modules were interacting. Another major conceptual hurdle three participants found in Rust
was .unwrap() vs ? operator (i.e. the Option vs Result type).

In comparison, most concepts in Wyvern came more easily to participants. An example of this
would be var vs. val. (P2, P4) mentioned they were easy to understand and helped them gain
quicker results in Wyvern’s implementation. However, there were some concepts in Wyvern that
participants had difficulty understanding. A major one was the difference between module def and
using plain module when defining abstractions. For module def, most participants were provided
with the analogy of the parameters as constructors (data members) along with function definitions.
However, (P1) raised an interesting question on wordCloud, where both WordFactory.Word and
WordFactory types had been passed as parameters. They asked why both needed to be passed when
only Word was needed in the implementation function. Here, the capability to access a value of type
WordFactory.Word itself depends on whether we have the existing capability for WordFactory - thus
following the rule of no ambient authority. Here, the Main module has to pass both the top-level
capability object and sub-capability object to different modules. This could potentially lead to many
parameters in module definitions in large systems, which can be considered as a case of overhead of
using capabilities.

5.1.2 Writing Syntax
One of the hurdles faced by participants was that they needed to learn the language syntax better, so
the process of writing up the correct syntax could have been faster for both languages. Even though
tutorials were designed for each language to implement the specific question to improve productivity,
they were limited in scope due to the time constraints of the study itself (we acknowledge this as
a limitation of the study design). Although the intention of the study was designed for participants
with a general computer science background, having some pre-reading on the documentation of the
specific languages before the interview would save significant time and help with more complex studies.
This could be achieved with a pre-survey on those specific languages before recruiting.

(P1, P3) felt that a lot of the code in Rust was boilerplate in terms of using appropriate type def-
initions. This was due to Rust’s complex set of borrowing rules. For example, (P1)’s implementation
of the logger module’s had to change the type of extension to mutable as well (since they structured
their logger with the file reference instead of location, and File is mutable in cap-std. In comparison,
users liked that they had to write less code in Wyvern without sacrificing stability.

Finally, users sometimes found it helpful to have code completion hints in Rust, of which none
exist in Wyvern. However, participants faced no significant problems in terms of the time taken to

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 8/13

write the program and complete the study on time.
5.1.3 Errors and Debugging

Rust Most of the participants found Rust’s error messages to be helpful in figuring out bugs, but only
once they understood the specific concept. A participant even mentioned that the error messages
popping up and fixing them helped the participant learn the language in a short period of time.
However, the author would like to be cautious about being totally dependent on errors generated by
the compiler. For example, (P2) faced an error in Rust, which suggested that the error was related
to invalid types; however, the actual error was that they had missed a semicolon (;) in the previous
line. This simple error, with an unrelated message, took a lot of time for the participant to debug.
Wyvern All participants noted that Wyvern was highly sensitive to bugs in lexical analysis and parsing,
which made it hard to debug the exact cause of the issue. This has to do with Wyvern being in its
initial stages of development. However, they used line numbers in the error message to estimate
where the bug resided and tried to change the code on a trial-and-error basis. In cases where the
participant could not solve the issue, we acted as the manual compiler and helped the participant fix
errors in this case. It is also essential to see that Rust’s documentation is more comprehensive than
Wyvern’s, with answers to specific questions on websites like StackOverflow. Hence, if the participant
was stuck for a long in a problem with Wyvern, we acted as the StackOverflow entity in that scenario.
One of the most common errors faced by participants was mismatching function/type definitions in
Wyvern’s specification and implementation. For example, (P3) realized that they needed to change
the following module definition when creating connect:
// Original code
module def poolMaker(startIp: String, endIp: String, startPort: Int, endPort: Int): PoolMaker
def connect(address: String, port: String): String
// Proposed change
def connect(address: String, port: Int): String

However, this change requires changes in PoolMaker module as well:
resource type PoolMaker

def connect(address: String, port: Int): String

From the points above, we arrive at a hypothesis on the usability of capable and incapable languages:

Hypothesis 1 (Usability). With fewer keywords in the language specification, Wyvern is easier
to learn in terms of syntax. Furthermore, compared to Rust, it provides better structure in terms
of reducing cognitive overhead when designing programs. However, there is a desire for (a)
minimizing the capability overhead on expressing capabilities in terms of language syntax and
(b) improving the debugging, documentation, and code completion, which accounts for factors
in the lack of usability for the language.

5.2 RQ2: Analysing Security of Capability-Designed Languages
In total, two types of vulnerabilities were found among the participants:
• One of the participants found the vulnerability in Network Pool (4.2) in Rust. They circumvented

the need to use a specific Pool object by importing cap-std within the extension. When the
extension function is called, they can now create a new Network Pool with any privilege and
connect to the network from there. There are no checks by the network connector whether the
extension module itself had the capability to access specific addresses. This could also be carried
on for the Logger Editor Example in terms of file systems. The participant could not think of a
solution in the time frame. Now, this raises an interesting point. The Main module has to look for
all types of imports within the whole codebase. Based on that, trust the extension. However, this
is not feasible in large software, where developers interact via function API documentation. This
problem was not faced in Wyvern, which could provide a potential use case for using capability-
based language design.

• (P4) found a vulnerability in creating additional Minters in both Rust and Wyvern; however could
not break the security of a single transaction. As such, both architectures were equally secure in
terms of implementation.

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 9/13

Thus, we reach the following hypothesis on the security of capable and incapable module systems:

Hypothesis 2 (Security). It was seen that capabilities ensured additional levels of security com-
pared to other modern programming languages in the context of trusting the API definition.
However, to see wider adoption from language designers, more work is required to classify more
security bugs that capabilities are particularly suited to solve.

5.3 Threats to Validity
It should be noted that the hypotheses state are derived from preliminary results. Therefore, a more
thorough study is required to validate them, which would address the following threats to validity:
Participants All recruited participants were from the same institution, all of whom were recent
graduates or undergraduates. We attempted to resolve this by having a brief pre-screening with
the participants. We asked them general questions regarding computer science concepts, which
would ensure that participants had the appropriate knowledge to implement concepts in the study.
However, it should be seen that the participants did not have much experience with designing software
architecture in the industry, which would lead to more security bugs in the underlying code and a
limitation in detecting potential bugs.
Prior Experience Considering that Wyvern is currently under research and Rust is an upcoming
language in the mainstream, not many people have had prior programming experience in the specific
languages. This could have made programming slower.
Study Procedure: Considering that we were asking the same subjects to break their own code, most
of them (except one participant) could not think of a way on how to do this. The order in which these
languages were studied is also important since participants already had a fair idea of the problem when
implementing it in a different language. This could be one of the reasons why participants found it
easier to code in Wyvern than in Rust. More anecdotal evidence conducted in a suitable design would
answer this question. For this, a potential alternative study design is to give participants another
participant’s code to break the security (similar to penetration testing in companies) since finding
vulnerabilities from a different solution is from a different experience. An experimental design that
limits cross-condition effects would be suitable here.

6 Concluding Remarks
6.1 Conclusion

We conducted a comparative study of traditional versus capability-based module systems by inter-
viewing four upper-level undergraduate students. In doing so, we identified two main hypotheses
relating to the usability and security of programs in capability-based languages to help programmers
be productive and motivate further work in researching further secure systems.

We hope these hypotheses will improve the understanding of reasons to design secure programming
languages via capability-based language systems. Furthermore, if principles from the study are used to
provide better tooling for existing capability-based languages, we hope that it will have broad benefits
in terms of writing better software in terms of programmer productivity, security, and extensibility.

6.2 Future Work
Current results show that we have only scratched the surface in this problem domain. Further avenues
for research mainly include improving the design of the study based on the following:
Larger target audience Preferably working professionals who are domain experts with at least one
of the programming languages being surveyed. We found that our study needed quantitative analysis
and collect more anecdotal evidence to support our claims. The current sample size is small for doing
any of the two. This would also help us use more complex software design problems during interviews.
Including more modern programming languages For a more comprehensive comparison and seeing
what features are needed in capability-based designed languages to make it more usable for general
programmers without sacrificing security. The current study has only two programming languages
with widely different syntaxes, so having different studies with closer languages would provide a better
benchmarks in evaluating usability.

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 10/13

Finding more Security Vulnerabilities The study designs should be based on existing CVE vul-
nerabilities. Vulnerabilities classified in CVEs are based on large-scale software, where decisions are
made on an architectural level. We can design studies about employing capabilities patterns on larger
systems to achieve this.

References
[1] A. Askarov and A. Sabelfeld, “Security-typed languages for implementation of cryptographic protocols:

A case study,” in Computer Security – ESORICS 2005, S. d. C. di Vimercati, P. Syverson, and D.
Gollmann, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 197–221, isbn: 978-3-540-
31981-8.

[2] M. S. Miller, MarkM’s Opening Statement on SOSP Panel, 2018. [Online]. Available: https://www.
youtube.com/watch?v=br9DwtjqmVI.

[3] M. Miller, K.-p. Yee, and J. Shapiro, “Capability myths demolished,” Dec. 2003.
[4] OWASP, OWASP Top Ten | OWASP Foundation — owasp.org, https://owasp.org/www-project-top-

ten/, [Accessed 29-May-2023], 2021.
[5] OWASP, Broken Access Control | OWASP Foundation — owasp.org, https://owasp.org/Top10/A01_

2021-Broken_Access_Control/, [Accessed 29-May-2023], 2021.
[6] Rust, Capability-oriented version of the rust standard library, https://github.com/bytecodealliance/cap-

std, 2023.
[7] Scala, Ocaps: Object-capabilities in scala, https://github.com/tersesystems/ocaps, 2023.
[8] Golang, Cap’n proto library and code generator for go, https://github.com/capnproto/go-capnp, 2023.
[9] G. Klein, J. Andronick, K. Elphinstone, et al., “seL4: Formal verification of an operating-system kernel,”

Communications of the ACM, vol. 53, no. 6, pp. 107–115, Jun. 2010. doi: 10.1145/1743546.1743574.
[10] R. N. Watson, J. Woodruff, M. Roe, S. W. Moore, and P. G. Neumann, “Capability hardware en-

hanced risc instructions (cheri): Notes on the meltdown and spectre attacks,” University of Cambridge,
Computer Laboratory, Tech. Rep., 2018.

[11] J. E. Richardson, M. J. Carey, and D. T. Schuh, “The design of the e programming language,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 15, no. 3, pp. 494–534, 1993.

[12] G. Bracha, “Newspeak programming language draft specification version 0.06,” Technical report, Min-
istry of Truth, Tech. Rep., 2009.

[13] G. Steed and S. Drossopoulou, “A principled design of capabilities in pony,” Master’s thesis, Imperial
College, 2016.

[14] D. Kurilova, A. Potanin, and J. Aldrich, “Wyvern: Impacting software security via programming language
design,” in Proceedings of the 5th Workshop on Evaluation and Usability of Programming Languages
and Tools, Portland, OR, USA, October 21, 2014, J. Sunshine, T. D. LaToza, and C. Anslow, Eds.,
ACM, 2014, pp. 57–58. doi: 10.1145/2688204.2688216. [Online]. Available: https://doi.org/10.1145/
2688204.2688216.

[15] D. Melicher, Y. Shi, A. Potanin, and J. Aldrich, “A capability-based module system for authority control
(artifact),” Dagstuhl Artifacts Ser., vol. 3, no. 2, 02:1–02:2, 2017. doi: 10.4230/DARTS.3.2.2. [Online].
Available: https://doi.org/10.4230/DARTS.3.2.2.

[16] D. Leijen, “Koka: Programming with row polymorphic effect types,” arXiv preprint arXiv:1406.2061,
2014.

[17] Stack Overflow, Developer survey, 2022. [Online]. Available: https://survey.stackoverflow.co/2022/.
[18] M. S. Miller, The confused deputy, 1997. [Online]. Available: http://erights.org/elib/capability/deputy.

html.
[19] J. Blatz, “Csrf: Attack and defense,” McAfee® Foundstone® Professional Services, White Paper, 2007.
[20] CVE, Vscode: Cve vulnerabilities, 2023. [Online]. Available: https://www.cvedetails.com/vulnerability-

list/vendor_id-26/product_id-50646/Microsoft-Visual-Studio-Code.html.
[21] M. S. Miller, C. Morningstar, and B. Frantz, “Capability-based financial instruments,” in Financial

Cryptography, 4th International Conference, FC 2000 Anguilla, British West Indies, February 20-24,
2000, Proceedings, Y. Frankel, Ed., ser. Lecture Notes in Computer Science, vol. 1962, Springer, 2000,
pp. 349–378. doi: 10.1007/3-540-45472-1_24. [Online]. Available: https://doi.org/10.1007/3-540-
45472-1%5C_24.

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 11/13

https://www.youtube.com/watch?v=br9DwtjqmVI
https://www.youtube.com/watch?v=br9DwtjqmVI
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://github.com/bytecodealliance/cap-std
https://github.com/bytecodealliance/cap-std
https://github.com/tersesystems/ocaps
https://github.com/capnproto/go-capnp
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/2688204.2688216
https://doi.org/10.1145/2688204.2688216
https://doi.org/10.1145/2688204.2688216
https://doi.org/10.4230/DARTS.3.2.2
https://doi.org/10.4230/DARTS.3.2.2
https://survey.stackoverflow.co/2022/
http://erights.org/elib/capability/deputy.html
http://erights.org/elib/capability/deputy.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-50646/Microsoft-Visual-Studio-Code.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-50646/Microsoft-Visual-Studio-Code.html
https://doi.org/10.1007/3-540-45472-1_24
https://doi.org/10.1007/3-540-45472-1%5C_24
https://doi.org/10.1007/3-540-45472-1%5C_24

[22] ARIES, ANU Research Information Enterprise System, 2023. [Online]. Available: https://services.anu.
edu.au/training/human-ethics-aries-training.

[23] R. (Huang, E. Pertseva, M. Coblenz, and S. Lerner, “How do Haskell programmers debug?,” Mar. 2023.
doi: 10.1184/R1/22277347.v1. [Online]. Available: https://kilthub.cmu.edu/articles/conference_
contribution/How_do_Haskell_programmers_debug_/22277347.

[24] J. Whalley and N. Kasto, “A qualitative think-aloud study of novice programmers’ code writing strate-
gies,” in Proceedings of the 2014 conference on Innovation & technology in computer science education,
2014, pp. 279–284.

[25] S. Y. Lye and J. H. L. Koh, “Review on teaching and learning of computational thinking through
programming: What is next for k-12?” Computers in Human Behavior, vol. 41, pp. 51–61, 2014.

[26] Rust, A capability-based API modeled after std, 2023. [Online]. Available: https : / / docs . rs / cap -
std/0.26.1/cap_std/.

[27] Rust, Capability-based standard directories, 2023. [Online]. Available: https://docs.rs/cap-directories/
0.26.1/cap_directories/.

[28] Rust, The rust standard library, 2023. [Online]. Available: https://doc.rust-lang.org/std/.

[29] M. Coblenz, A. Porter, V. Das, T. Nallagorla, and M. Hicks, “A Multimodal Study of Challenges Using
Rust,” Mar. 2023. doi: 10 .1184/R1/22277326.v1. [Online]. Available: https ://kilthub.cmu.edu/
articles/conference_contribution/A_Multimodal_Study_of_Challenges_Using_Rust/22277326.

[30] Rust, Capability-based network pools, 2023. [Online]. Available: https://docs.rs/cap-std/1.0.15/cap_
std/net/struct.Pool.html.

A Appendix
A.1 Post-study survery questions for Study Designs

1. How useful do you think capabilities are?
2. How much did you like working on Wyvern?
3. How much did you like working on Rust?
4. How much did you think you understand the concept of capabilities?
5. What are some things that you would have wanted to improve in the survey if you had the chance

to do it all over again?
A.2 FileIO in Wyvern

import fileSystem.BoundedReader
import fileSystem.Writer
import fileSystem.RandomAccessFile
import fileSystem.BinaryReader
import fileSystem.BinaryWriter
resource type File

effect Read
effect Write
effect Append
def makeReader(): {} BoundedReader
def makeWriter(): {} Writer[{this.Write, this.Append}]
def makeAppender(): {} Writer[{this.Append}]
def makeBinaryReader(): {} BinaryReader
def makeBinaryWriter(): {} BinaryWriter
def makeRandomAccessFile(mode : String): {} RandomAccessFile

A.3 Post-Study Survey

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 12/13

https://services.anu.edu.au/training/human-ethics-aries-training
https://services.anu.edu.au/training/human-ethics-aries-training
https://doi.org/10.1184/R1/22277347.v1
https://kilthub.cmu.edu/articles/conference_contribution/How_do_Haskell_programmers_debug_/22277347
https://kilthub.cmu.edu/articles/conference_contribution/How_do_Haskell_programmers_debug_/22277347
https://docs.rs/cap-std/0.26.1/cap_std/
https://docs.rs/cap-std/0.26.1/cap_std/
https://docs.rs/cap-directories/0.26.1/cap_directories/
https://docs.rs/cap-directories/0.26.1/cap_directories/
https://doc.rust-lang.org/std/
https://doi.org/10.1184/R1/22277326.v1
https://kilthub.cmu.edu/articles/conference_contribution/A_Multimodal_Study_of_Challenges_Using_Rust/22277326
https://kilthub.cmu.edu/articles/conference_contribution/A_Multimodal_Study_of_Challenges_Using_Rust/22277326
https://docs.rs/cap-std/1.0.15/cap_std/net/struct.Pool.html
https://docs.rs/cap-std/1.0.15/cap_std/net/struct.Pool.html

Figure 7. Quantitative Results for the Post-Study Survey (in order of questions asked in section 3)

A. Goyal, A. Potanin and J. Aldrich | PLATEAU | v.14 | n.1 | ennnnn | 2024 13/13

	Introduction
	Background and Related Work
	Capabilities: Motivation
	Capability Patterns: Sealer-Unsealer

	Methodology
	Study Design
	Logger Editor
	Instructions

	Network Pool
	Instructions

	Simple Money
	Instructions

	Results
	RQ1: Usability of capabilities in the language vs. library
	Understandability of existing code and Extensibility
	Writing Syntax
	Errors and Debugging

	RQ2: Analysing Security of Capability-Designed Languages
	Threats to Validity

	Concluding Remarks
	Conclusion
	Future Work

	Appendix
	Post-study survery questions for Study Designs
	FileIO in Wyvern
	Post-Study Survey

