
Reproducibility Debt: Challenges and Future Pathways

Zara Hassan
Australian National University

Canberra, Australia
zara.hassan@anu.edu.au

Christoph Treude
Singapore Management University

Singapore, Singapore
ctreude@smu.edu.sg

Michael Norrish
Australian National University

Canberra, Australia
michael.norrish@anu.edu.au

Graham Williams
Australian National University

Canberra, Australia
graham.williams@anu.edu.au

Alex Potanin
Australian National University

Canberra, Australia
alex.potanin@anu.edu.au

ABSTRACT

Reproducibility of scienti�c computation is a critical factor in

validating its underlying process, but it is often elusive. Complexity

and continuous evolution in software systems have introduced new

challenges for reproducibility across a myriad of computational

sciences, resulting in growing debt. This requires a comprehensive

domain-agnostic study to de�ne and asses Reproducibility Debt

(RpD) in scienti�c software, thus uncovering and classifying

all underlying factors attributed towards its emergence and

identi�cation i.e., causes and e�ects. Moreover, an organised map

of prevention strategies is imperative to guide researchers for its

proactive management. This vision paper highlights the challenges

that hinder e�ective management of RpD in scienti�c software,

with preliminary results from our ongoing work and an agenda for

future research.
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1 INTRODUCTION

Technical Debt (TD) is de�ned as a “collection of design or

implementation constructs that are bene�cial in the short-term but

set up a technical context that can make future changes more costly

or impossible” [2], meaning that developers adopt practices that are
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expedient in the short term but compromise the overall quality of

software [31, 35].Multiple TD types have been identi�ed, alongwith

their occurrences (namely, smells) and corresponding management

strategies [2, 29]. Scientists implementing scienti�c software1

can also incorporate TD; even though they are domain experts,

they often lack knowledge of required Software Engineering (SE)

practices to develop high-quality software [18, 19, 27]. As a result,

TD is not exclusive to traditional and commercial software but

also manifests in scienti�c software, where its adverse e�ects can

become more concerning. This added complication is caused by

scienti�c software’s purpose–to produce research outcomes in a

myriad of disciplines, which form the basis for future scienti�c

research [37].

In scienti�c research, reproducibility is an essential instrument

allowing researchers to continue and extend previously published

results [33]. In this context, Nature surveyed ‘Reproducibility in

Scienti�c Research’, revealing that more than 70% of researchers

were unable to reproduce published results and concluded it as a

‘Reproducibility Crisis’ [3]. The impact of the crisis also extends to

computational space and raises questions on the reliability and

credibility of scienti�c software [18, 33]. In scienti�c software,

the “inability to reproduce results can often be attributed to

technical issues and challenges around reliably recreating the full

computational work�ow from the original analysis” [6, 15, 26]

which we have conceptualised as Reproducibility Debt (RpD).

We hereby argue that scienti�c software are intrinsically liable

to inherit RpD. Therefore, using scienti�c software under the

assumption that it has stable dependencies, consistent response to

data, and adequate tests (reportedly proven to be of poor quality

[19, 36]), poses a threat to the validity of scienti�c results. Our vision

is that thorough research is required to de�ne and assess RpD and

other aspects of reproducibility in scienti�c software from a SE

perspective. In this context, this paper highlights the challenges

that hinder the management of RpD in scienti�c software projects

and provides an agenda for future research.

2 CHALLENGES

This section provides an overview of the identi�ed challenges,

discussed under four main headings.

1“End-user application software that is written to achieve scienti�c objectives (e.g.,
Climate models), tools that support writing code that expresses a scienti�c model and
the execution of scienti�c code, research software written to publish papers, production
software written for real users” [19]

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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2.1 Diverse De�nitions of Reproducibility

The importance of reproducibility is acknowledged across all

computational sciences. Therefore, scientists across domains have

de�ned reproducibility with respect to their discipline-speci�c

needs, resulting in diverse de�nitions. For instance, according to

Drummond [9] “reproducibility requires changes”—obtaining the

same results from a markedly di�erent experiment. Two slightly

more re�ned de�nitions interpreted reproducibility as “the ability

of a study to be reproduced, in whole or in part, by an independent

research team.” [13], and “...the ability of an independent team to

recreate the same qualitative results” [28]. In a concise approach

to de�ning elements needed to achieve reproducibility, Barba [4]

brie�y stated that “same data + same method = same results”. In

a more polished de�nition, Peng [26] stated that “reproducibility

is a continuous variable ranging from only a paper describing an

experiment being shared, to the linked executable code and data

being shared along with the paper”. According to Essawy et al. [10],

“reproducible software” in hydro-logic modelling requires sharing both

the software and data, but also their associated metadata—a detail

omitted in other de�nitions.

Conclusion. The lack of consensus on a single de�nition

has caused a negative impact towards building a common

understanding among scientists and researchers about what

reproducibility entails. Thus, hindering the development of a uni�ed

approach towards its e�ective management; also acknowledged

by the Federation of American Societies for Experimental Biology

(FASEB [11]) and the National Academy of Sciences Committee

on Reproducibility and Replicability of Science (NASEM [25]) who

stated that “lack of consensus on a single de�nition [is] among the

causes of the [reproducibility] crisis”.

2.2 Domain-Speci�c Strategies

The �rst step in TD management is the identi�cation of TD

items i.e., a list of issues or bad practices which create debt

[16, 21, 29]. In the case of RpD, various scientists and researchers

have made domain-speci�c e�orts regarding reproducibility issues.

This has led to a myriad of positions highlighting various factors

in�uencing reproducibility i.e., missing dependencies, inadequately

documented work�ows, poorly written code, version upgradation

in programming languages, libraries, operating systems, and

non-deterministic order of execution in parallel systems [5, 6, 15, 22,

32]. However, most of the identi�ed issues and proposed solutions

are domain-speci�c, resulting in isolated proposals that are either

not applicable or unacknowledged in other disciplines.

For instance, in one approach, existing SE tools and technologies

are suggested as a solution to ensure the reproducibility of

scienti�c work�ows i.e., the use of containers, literate programming

notebooks, version control, and open-source repositories [6,

15, 17, 33, 34]. In a more sophisticated approach, specialised

platforms and infrastructures were developed by researchers, to

meet their problem and disciplines’ speci�c needs. For instance,

the Whole Tale [5] platform facilitates the linkage of data and

codes with publications by strengthening the three layers of

scholarly publication i.e., scholarly process, data, and computational

analysis. N3phele [8] is a cloud-based solution for managing the

reproducibility of complex biological data processing pipelines.

Osiris [38] is an automated approach to make Jupyter notebooks

reproducible. PyDFix [24] detects and �xes dependency errors in

Python builds. Maneage [1] is designed to manage data lineage and

longevity issues in tools such as Docker and Jupyter Notebooks.

Invarient framework [23] enables reproducibility by capturing

and preserving the dependencies and con�gurations used by the

program.

Conclusion. Despite various attempts to highlight the under-

lying causes of RpD, the suggested initiatives are primarily

domain-speci�c and lack coordination, limiting their identi�cation,

measurement and prevention. Given the broad and growing reliance

on scienti�c software across a myriad of computational science

disciplines, a comprehensive domain-agnostic study from a SE lens

is imperative.

2.3 Inadequate Use of SE Practices

Scienti�c software is mainly developed by or under the supervision

of domain engineers/scientists, less acquainted with state-of-the-art

SE practices and tools. Johanson and Hasselbring [18] argued that

computational scientists rarely adopt SE practices, resulting in

productivity and credibility crises. Pinto et al. [27] and Vidoni [37]

report that research scientists do not employ formal Requirements

Engineering practices, and instead of documenting requirements,

they rely on source code comments, thus incorporating TD.

Heaton and Carver [14] report that scienti�c software developers,

regardless of realising the importance of software veri�cation,

validation, and testing, can only partially adopt these practices due

to limited knowledge about their application in scienti�c software.

We contend that the inadequate use of SE practices in scienti�c

software development can lead to the accumulation of RpD.

Scienti�c software often involves complex computations and

data processing; therefore, researchers may prioritise short-term

scienti�c goals, i.e., getting faster results and speeding up

publications, over SE practices, i.e., detailed documentation and

rigorous testing [18, 19]. This approach can lead to software

that is di�cult to maintain and reproduce, resulting in long-term

consequences such as the lack of trust in published works, erratic

comparisons to other works, and the inability to build upon others’

work, grossly hindering progress in science.

Conclusion. We stand by the argument of Heaton and Carver

[14] that the use of SE practices will bene�t scienti�c software

development by improving accuracy and streamlining the

development process. However, there is a need to customise existing

SE practices to better align with the requirements of scienti�c

software development for their better adoption and utilisation.

2.4 Undervalued Human-Centric Aspects

Most of the literature on reproducibility focuses solely on technical

aspects and provides proposals (tested or not) to resolve them [5, 6,

15] as discussed in Section 2.2.We argue that building a reproducible

package should not be con�ned to the technical aspects only; at

the same time, it should encompass human-centred considerations,

institutional stances and support, and ethical protocols.

Reproducibility relies mainly on the scientist whose work is

to be reproduced and is biased by an individual’s perception of
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reproducibility and how pertinent institutions support them. For

example, scientists may consider that there are no direct bene�ts or

incentives to have their work reproduced, that the e�ort required to

clean code and data is unwarranted, that they may lose competitive

advantage over other researchers, or they may be concerned or

deterred by intellectual property issues [33, 34]. Although e�cient

collaboration is essential for scientists who rely on scienti�c

software, little has been achieved for policies and incentive schemes

to create a culture of collaborative and reproducible research.

Conclusion. Comprehensive analysis of RpD in scienti�c

software can not be achieved by restricting our focus to its technical

and structural concerns. Since humans are the originators of every

research work, human-centric aspects [7] —including cultural,

psychological, and social factors—warrant detailed exploration.

3 RESEARCH OBJECTIVES

Given the highlighted challenges, we begin our study to consolidate

existing knowledge on ‘Reproducibility in Scienti�c Software’

across all scienti�c disciplines using a Systematic Literature Review

(SLR) based on the guidelines of Kitchenham and Charters [20].

The goal of the study is to: formulate an integrated de�nition of

‘Scienti�c Software Reproducibility’ and ‘Characterise RpD’ based

on issues (causes and e�ects) discussed in the existing literature.

Our detailed agenda and research questions are stated in Section

4. However, preliminary results from our ongoing SLR that satisfy

the following two RQs are presented in this section with a short

description of the opted methodology.

(1) How can the concept of Reproducibility be de�ned and

characterised in the context of scienti�c software?

(2) What are the main categories of issues that contribute to RpD,

and what is their relation with established TD types?

3.1 Methodology

Step1: Inclusion/Exclusion Criteria were formulated based

on the primary research objective to ensure the inclusion of

quality literature (e.g., peer-reviewed), that discusses open

science, reproducibility and/or replicability (under this name

or another) of scienti�c software (or aspects related to it) in

any discipline. Moreover, we did not exclude any publications

based on the year to mitigate the risk of missing relevant papers.

Step2: The following Search String was used to search the

literature from ACM Digital Library, IEEE Xplore, ScienceDirect,

Springer, Wiley and Taylor & Francis. To avoid publisher bias

Google Scholar was also added as given in guidelines byWohlin [39]:

(“reproducibility” OR “replicability” OR

“repeatability”) AND (“open source” OR “open

science” OR “open code”) AND (“scientific

software” OR “scientific computing” OR

“computational software”)

Step3: After collecting all primary studies (2198 papers),

Zotero2 was used to remove duplicates. Step4: Primary studies

were selected using a three-stage �ltering process applying

pre-de�ned IECs and Quality Criteria. Step5: The requisite data

2https://www.zotero.org/

was extracted from 214 primary studies in a spreadsheet. Step6:

The qualitative approach to synthesise the extracted data was

adopted. (A list of selected papers, IECs, Quality Criteria and Data

Extraction form can be viewed here.3)

3.2 Preliminary Results

3.2.1 Defining Scientific So�ware Reproducibility. We identi�ed

that out of 214 selected papers, 104 provided the de�nition of

reproducibility (proposed, re-used, or discussed). A qualitative

analysis of all extracted de�nitions was performed to identify

common themes and patterns among them. We identi�ed that the

‘ability to re-perform experiment’ is a prominent theme among all

de�nitions, other four concepts that delimit reproducibility in the

context of scienti�c software are: “use of computational methods”,

“using open knowledge”, “individual analysis and interpretations

of results”, and “independent replication”. Based on the identi�ed

themes, we devised the following de�nition of ‘Scienti�c Software

Reproducibility’.

‘Scienti�c Software Reproducibility’ is the ability to re-perform

experiments using computational methods and open knowledge

to obtain results that can be analysed, interpreted, and replicated

independently.

3.2.2 Issues Contributing towards RpD. Identi�cation of TD items

is usually the �rst step in the management of TD in any software

systems [12, 16, 29]. RpD items in scienti�c software refer to the

technical issues, sub-optimal practices or challenges within the

development and usage of scienti�c software that can hinder the

reproducibility of research results. To characterise RpD in scienti�c

software, we developed a high-level taxonomy of RpD items based

on qualitative analysis of data obtained from selected primary

studies. The proposed taxonomy provides a structured overview of

issues attributed towards the emergence and identi�cation of RpD

(See Table 1).

Moreover, from the ongoing analysis of the obtained data, we

identi�ed several underlying causes and e�ects of RpD under each

category, which includes (but are not limited to) non-systematic

data processing and analysis, unorganised data and analysis �les,

incomplete or selective reporting of datasets, non-Standardised data

and metadata formats for storage, sharing and reuse, poorly organised

code, undocumented scienti�c work�ows, missing dependencies,

inadequate data and code documentation, lack of programming and

computing skills among researchers, lack of knowledge in research

data management skills, and lack of trusted infrastructure for storing,

processing and distributing large datasets and scienti�c software code.

We also established a relationship between identi�ed RpD items

and existing TD types by concurrently analysing our emerged

factors (causes and e�ects) and the list of situations (smells)

discussed by Alves et al. [2], Rios et al. [29], Sculley et al. [32]

where these debts can occur in software systems also shown in

Table 1.

3https://doi.org/10.6084/m9.�gshare.25771689.v2
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Table 1: High level taxonomy of RpD items and their hypothesised relation with existing TD types

RpD Item Description Related Debt [2, 29, 32]

Data-Centric Issues These are related to scienti�c data processing, storage, and dissemination. Data, Documentation,

Infrastructure

Code-Centric Issues These are related to developing, organising, and disseminating scienti�c

software code.

Code, Versioning, In-

frastructure, Build, Test

Documentation

Issues

Incomplete or unclear documentation can hinder understanding the processes

required to reproduce research �ndings. This includes missing details about

data sources, software dependencies, or speci�c con�gurations used in analysis.

Documentation, Data,

Code

Infrastructure and

Tools-Centric Issues

These are associated with the infrastructure, tools, and technologies used to

develop and store scienti�c software.

Infrastructure, Build,

Architecture

Versioning Issues Arise when the version of software, code, or data used in the original research

is unavailable or incompatible with other software used in replication.

Data, Versioning, Code

Human-Centric

Issues

These are associated with individuals involved in scienti�c research, including

software developers, domain researchers, reviewers, and funding organisations.

People, Cultural

Legal Issues Refer to the intellectual property and ownership issues in open research

software and data.

–

4 FUTURE AVENUES OF RESEARCH

We have formulated an integrated de�nition of ‘Scienti�c Software

Reproducibility’ and a high-level taxonomy of RpD items to

serve as a baseline to guide our future work, discussed under

three main headings. The laid down research questions will be

investigated by conducting SLR, surveys, and interview-based case

studies, involving researchers and scienti�c software developers,

as demonstrated by prior works to investigate TD [2, 29, 30].

4.1 Uni�ed RpD Framework

The following research questions aim towards the development of

a uni�ed framework for the identi�cation and management of RpD

in scienti�c software projects.

(3) What are themain causes of RpD in scienti�c software projects?

(4) What e�ects does RpD have on scienti�c software projects?

(5) How does RpD manifest in scienti�c software?

(6) What are the mitigation strategies to e�ectively manage RpD

in scienti�c software?

We intend to formulate an evolved taxonomy of RpD, identify

a list of situations in which debt/smells can be found in scienti�c

software projects, and create an organised map of activities.

This results in a theoretical framework that will include speci�c

guidelines and processes to mitigate and manage RpD (akin to the

one produced by Rios et al. [30] for Documentation Debt).

4.2 Reproducibility-Oriented SE

As discussed in Section 2.3, there is a need for customised SE

practices for scienti�c software development, thereby enforcing

their full adoption and utilisation. Therefore, we propose the

notion of Reproducibility-Oriented SE, which refers to an approach

to scienti�c software development that incorporates best practices

and principles from SE and scienti�c research to produce transparent,

reliable, and reproducible software. Hence, our next two questions

are focused on exploring SE practices for developing reproducible

scienti�c software:

(7) What are the key SE practices and tools supporting

reproducibility, and what is their current state of adoption

among computational scientists?

(8) What are the most e�ective SE practices and tools towards

achieving fast results and publications?

We intend to evolve a custom SE process model for scienti�c

software, namely Reproducibility-Oriented Process (ROP) by

concurrently analysing RQ 7 and 8, thus guiding researchers to

achieve short-term bene�ts through improved results and long-term

bene�ts through more maintainable and reproducible software.

4.3 Human Aspects of Reproducibility

Human aspects of SE bring attention to the psychological, social,

and cultural aspects of a better software development process

[7]. As stated in Section 2.4 reproducibility is a multifaceted debt

directly a�ected by the perceptions of scientists whose work is to

be reproduced. Therefore, understanding the human aspects of RpD

in the scienti�c software development process is essential for its

management. Hence, our following two research questions focus

on exploring the human aspects of reproducibility:

(9) What factors lead researchers and scienti�c software developers

to de-prioritise reproducibility?

(10) How can funding agencies and institutions support researchers

and developers towards Reproducibility-Oriented Research?

We intend to develop a culture of reproducible research that

needs to be nurtured by combining the e�orts of the SE community,

publishers of scienti�c research, and scienti�c software developers.

To achieve this, we will explore already established work on human

aspects of SE from a reproducibility perspective. The goal is to

formulate a comprehensive set of guidelines suitable for developers

and reviewers, covering all aspects of reproducibility.
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