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A B S T R A C T

Context: In scientific software, the inability to reproduce results is often due to technical issues and
challenges in recreating the full computational workflow from the original analysis. We conceptualise
this problem as Reproducibility Debt (RpD). Much research has been performed to propose solutions
to tackle these issues across various computational science disciplines. It is essential to identify
and accumulate existing knowledge on reproducibility issues and state-of-the-art solutions so as to
provide researchers and practitioners with information that enables further research activities and
RpD management in practice. Objective: In the context of scientific software, we aim to characterise
RpD by providing a taxonomy of issues contributing towards its emergence and identification (causes,
effects) and the common solutions discussed in the existing literature. Method: We conducted a
systematic literature review, considering 2198 studies until January 2024, including 214 primary
studies. Results: We propose the first taxonomy of RpD items consisting of 37 causes attributed
towards its emergence, 63 corresponding effects under seven main categories, and 29 prevention
strategies. Moreover, we also identify 39 specialised tools/frameworks supporting reproducibility.
Conclusion: The main contributions of this work are (1) a formal definition of RpD; (2) a taxonomy
of issues contributing towards RpD; (3) a list of causes and effects having implications for software
professionals to identify and measure RpD in their projects; (4) a list of strategies and tools to prevent
or remove RpD; (5) the identification of gaps in existing research to guide future studies.

1. Introduction
Technical Debt (TD) is defined as a “collection of design

or implementation constructs that are beneficial in the short-
term but set up a technical context that can make future
changes more costly or impossible” (Ernst et al., 2021),
meaning that developers adopt practices that are expedient in
the short term but compromise the overall quality of software
(Rocha et al., 2017; Tom et al., 2013). Multiple TD types
have been identified, along with their occurrences (known as
‘smells’) and corresponding management strategies (Alves
et al., 2016; Rios et al., 2018). TD is commonly introduced
to achieve short-term goals, whilst its impact on a project
can be mitigated and controlled through appropriate man-
agement processes (Freire et al., 2020; Fernández-Sánchez
et al., 2017; Lenarduzzi et al., 2021). Identifying the existing
TD types is essential to enable strategies for their timely
management (Rios et al., 2018); therefore, we must continue
investigating emerging TD types.

Scientists implementing scientific software1 are also
prone to introducing TD; even though they are domain
experts, they often lack knowledge of common Software

∗Corresponding author
zara.hassan@anu.edu.au (Z. Hassan); ctreude@smu.edu.sg (C.

Treude); michael.norrish@anu.edu.au (M. Norrish);
graham.williams@anu.edu.au (G. Williams); alex.potanin@anu.edu.au (A.
Potanin)

ORCID(s): 0000-0003-3416-2991 (Z. Hassan)
1“End-user application software that is written to achieve scientific

objectives (e.g., Climate models), or tools that support writing code that
expresses a scientific model and the execution of scientific code, or research
software written to publish papers, production software written for real
users” Kanewala and Bieman (2014).

Engineering (SE) practices to develop high-quality software
(Pinto et al., 2018; Heaton and Carver, 2015), or they may
give priority to publishing results, thereby avoiding detailed
documentation and rigorous testing (Johanson and Hassel-
bring, 2018; Kanewala and Bieman, 2014). Consequently,
TD is not exclusive to traditional and commercial software
but also manifests in scientific software, where its adverse
effects can become even more concerning. This added
complication is caused by scientific software’s purpose, i.e.,
to produce research outcomes in a myriad of disciplines,
which form the basis for future scientific research (Vidoni,
2021; Hannay et al., 2009).

The pervasiveness of scientific software across many
computational science disciplines has resulted in the in-
creased importance of open science practices, “a movement
to make all research artefacts available to the public, thus,
ensuring the transparency and reproducibility of scientific
processes” (Méndez Fernández et al., 2019). Addressing
this, several organisations are now promoting open science
and reproducibility by providing tools to share relevant
scientific software and corresponding datasets. Examples are
Research Software Alliance (ReSA), which now has chap-
ters across different regions, including Australia and New
Zealand; the Australian Research Data Commons (ARDC),
which provides open access to categorised datasets; and the
Australian Research Council (ARC), whose commitment to
open science is a requisite in their discovery grants. The
National Science Foundation (NSF) also supports repro-
ducibility and recommends publishing source code and data.

Despite gaining much importance, the reproducibility of
scientific software and associated results remains a challenge
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across the myriad of computational sciences, resulting in
growing challenges (Sculley et al., 2015; Ivie and Thain,
2019). In scientific software, the inability to reproduce re-
sults is often due to technical issues and challenges in recre-
ating the full computational workflow from the original anal-
ysis (Canon, 2020; Peng, 2011; Ivie and Thain, 2019), which
we conceptualise as Reproducibility Debt (RpD). However,
only a few studies acknowledge it as TD (Abubakar et al.,
2020; Geiger et al., 2018; Sculley et al., 2015). Moreover,
there is a lack of a standardised RpD definition, smells are
not categorised, and descriptions of issues and challenges
are scattered throughout the literature; complicating the
establishment of a shared vocabulary for the area.

Our Systematic Literature Review (SLR) aims to ‘Char-
acterise RpD in Scientific Software’. This includes provid-
ing a consolidated definition and taxonomy of RpD items
derived from prior primary studies. We uncover and classify
the causes and common problems attributed to its emergence
alongside the organisation of solutions for its proactive man-
agement. Gaps are identified, and opportunities for the de-
velopment of new research are presented, supporting further
research in this area.

In the following, Section 2 presents related work and
Section 3 details the methodology we used to perform the
SLR. Our results are presented and discussed in Sections 4
and 5, while Section 6 identifies possible validation issues
for this research. In Section 7, we conclude our review and
identify future studies. Our reproducibility package contain-
ing raw data, qualitative and quantitative analysis files can
be viewed here 2

2. Related Work
This section reviews the significant contributions from

relevant research in TD and identifies the importance of
reproducibility and openness in scientific research software
from different disciplinary perspectives.

2.1. Technical Debt (TD)

2.1.1. General Technical Debt
Since Cunningham (1992) first proposed the metaphor

of TD, numerous studies have identified different types
of TD and have devised processes and strategies for their
Management (Avgeriou et al., 2016; McConnell, 2008; Li
et al., 2014). Alves et al. (2016) conducted a systematic
mapping study, considering 100 papers published from 2010
to 2014, to propose an initial taxonomy of TD types together
with a list of existing strategies for their identification and
management. Rios et al. (2018) then conducted a system-
atic tertiary study between 2012 and 2018, considering
13 secondary studies. They evolved the taxonomy of TD
types and produced a list of indicators of their occurrence,
organising a map of activities, strategies and tools to man-
age TD. Although the results of both studies encompassed
several TD types, they worked with primary studies centred

2https://doi.org/10.6084/m9.figshare.25540978.v1

on traditional software development and did not consider
RpD or scientific software. Likewise, Lacerda et al. (2020)
only focused on identifying Code Smells and Code Debt to
provide an assessment of which detection and refactoring
tools/processes could be applied to counteract those smells.

From a human-centred perspective, Freire et al. (2020)
used a system of validated surveys (InsighTD) to study the
relationships between preventive actions and TD types, and
although they did assess a large array of debts, they did not
consider RpD either. Codabux et al. (2021) explored open
peer-reviews written as GitHub issues to identify the TD in
R packages submitted to rOpensci. They manually analysed
5000 comments from 157 packages and evolved a taxonomy
of TD specific to R packages, including the perspective of
editors, developers and reviewers. Once again, RpD was not
discussed.

Several other studies identified TD through source code
inspection (Brown et al., 2010; Zazworka et al., 2014), exam-
ining traditional software written in Java and C. Tsoukalas
et al. (2021) applied machine learning (ML) to identify and
assess TD in Java projects. They used 18 metrics related
to each Java class for statistical and ML models to classify
them as ‘High-TD or not’ and proposed a prototype tool
for auto-assessment of TD in Java projects. Subsequently,
Tsoukalas et al. (2022) introduced a tool named ‘TD Classi-
fier’ based on earlier work. TD Classifier incorporates the
knowledge extracted by accumulating the results of three
widely used TD assessment tools Squore (Baldassari, 2013),
SonarQube (Saarimaki et al., 2019) and CAST (Curtis et al.,
2012), and relied on other open-source tools to spot high-TD
classes in Java projects from their Git repository. While TD
Classifier assists the developer in TD management activities,
it is limited to the Java programming language and would
need to be expanded to support other languages used in the
development of scientific software.

Tang et al. (2021) formulated a taxonomy of refactoring
in ML and deep learning (DL) systems. They introduced
14 ML-specific and 7 TD-specific categories by analysing
26 ML projects. As a result, they suggested best practices
and anti-patterns to assist practitioners and developers in
evolving long-lasting ML systems and to assist educators in
teaching methods for tackling TD in ML and DL systems.

In summary, while TD has been extensively explored
within software development, RpD has not yet received sig-
nificant attention. The software development community has
recognised the importance of addressing TD to ensure the
long-term viability and maintainability of software systems;
the scientific community is increasingly grappling with is-
sues related to the reproducibility of scientific software and
associated results.

2.1.2. Self-Admitted Technical Debt (SATD)
Potdar and Shihab (2014) used source code comments

from four open-source Java projects to investigate TD and
named it SATD in recognition of the developers admitting
to having TD in their project declared through source-code
comments. Later, Liu et al. (2020) identified SATD in DL
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frameworks, widely used in scientific applications of com-
putational sciences. Inline comments admitting to incurring
(knowingly or not) different TD types were analysed in
seven popular open-source DL frameworks, including Ten-
sorFlow 3 and Keras 4, uncovering the presence of significant
TD. The situation was concerning since TD affects the
quality and reliability of applications developed using such
frameworks, especially due to the pressure for a reduced
delivery time (Lim et al., 2012). Their work identifies seven
different TD types (design, algorithm, requirements, defect,
documentation, test and compatibility) but does not mention
RpD.

Vidoni (2021) conducted mixed-methods studies to in-
vestigate SATD in R Programming, mining 500 R pack-
ages from GitHub, representing over 164,000 source code
comments, and conducting two surveys. This manual study
identified 12 TD types (including Algorithm Debt) but did
not address RpD. Xavier et al. (2022) investigated situa-
tions that led developers to document TD using either code
comments or issues. They used a large dataset compris-
ing 74,000 comments and 20,000 issue instances from 190
GitHub projects and suggested guidelines for developers to
decide between issues or comments for reporting TD. Tan
et al. (2022) conducted an empirical study to investigate
self-fixed TD using static analysis of some 44,000 commits
from Java and Python projects. They assessed the extent to
which developers fixed their own introduced TD, the type of
debt (Documentation, Code, Design, Test, and Defect) more
likely to be self-fixed, and their remediation time compared
to non-self-fixed TD.

Seminal works in SATD (Potdar and Shihab, 2014;
da Silva Maldonado et al., 2017) assessed automated ap-
proaches for SATD detection in many data sources and
with multiple classifiers (Bavota and Russo, 2016; Flisar
and Podgorelec, 2019; Sierra et al., 2019; Xavier et al.,
2020). Manual investigations were also conducted to un-
cover specific nuances (Maldonado and Shihab, 2015; Fucci
et al., 2021). These studies focused almost exclusively on
a common dataset of ten corporate, large-scale Java-based
repositories from Potdar and Shihab (2014) and do not
mention RpD.

2.2. Reproducibility and Openness in Scientific
Research

2.2.1. Conferences’ Interests in Reproducibility
Openness and transparency of the scientific research

process are fundamental aspects for the progression of sci-
ence (Raghupathi et al., 2022). The increasing reliance on
computing models in scientific research has prompted the
scientific community to address concerns regarding the re-
producibility of scientific computations (Bajpai et al., 2017;
Freire et al., 2012). Consequently, prominent engineering

3https://github.com/tensorflow/tensorflow
4https://keras.io/

and scientific forums prioritise raising awareness and imple-
menting policies to facilitate the reproducibility of scientific
computations.

The Association for Computing Machinery (ACM) has
implemented rigorous policies to ensure the reproducibility
of research outputs. This includes the establishment of the
Reproducibility Task Force5, which collaborates with Spe-
cial Interest Groups (SIGs) conferences6, and Engineering
Interactive Computing Systems (EICS)7. Their efforts focus
on promoting best practices in reviewing software and data
artefacts and enhancing re-usability through improved doc-
umentation and review processes. According to the ACM,
research is reproducible “when its results can be generated
by an independent team using the same experimental setup
as (the) original researchers”8. Furthermore, the Institute
of Electrical and Electronics Engineers (IEEE) established
a task force in 2020 dedicated to advancing open science
and reproducibility. This task force aims to analyse models,
practices, and experiences to support open science and re-
producibility within the IEEE Computer Society and among
peer societies and publishers.9

MethodX10, SoftwareX11 and Journal of Systems and
Software (JSS) 12 are renowned journals published by Else-
vier, dedicated to promoting openness and reproducibility in
research methodologies and software. MethodX specifically
adheres to the FAIR data principles (Findable, Accessi-
ble, Interoperable, and Reusable), aiming to enhance the
discoverability of methods, protocols, reviews, and asso-
ciated research. By fostering collaboration and facilitating
discussions for improvement throughout the research cycle,
MethodX contributes significantly to open science and the
enhancement of reproducibility. Similarly, JSS has recently
introduced the JSS Open Science initiative to support repro-
ducibility in scientific research. A paper published in this
special section is reviewed by the JSS Open Science board
to ensure transparent and reproducible research.

In contrast, SoftwareX promotes domain-independent
software by supporting their publication, establishing their
scientific relevance, and making them accessible for inspec-
tion, validation, and re-use. Beyond merely facilitating the
reproducibility of software and associated data, SoftwareX
also provides credit to the authors and contributes to aca-
demic advancement by enabling software citation.

5https://www.acm.org/publications/artifacts
6https://www.acm.org/special-interest-groups/volunteer-resources/

officers-manual/conferences
7https://eics.acm.org/
8https://www.acm.org/publications/policies/

artifact-review-and-badging-current
9https://ieeecs-media.computer.org/media/tech-news/

ieee-reproducibility-practices-survey-summary-of-findings-1.pdf
10https://www.sciencedirect.com/journal/methodsx
11https://www.sciencedirect.com/journal/softwarex
12https://www.sciencedirect.com/journal/

journal-of-systems-and-software/special-issue/10XMGH48FFT
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2.2.2. Reproducibility in Empirical Software
Engineering (ESE)

Among the ESE research community, problems related
to reproducibility have gained interest during the last two
decades (Miller, 2005; Vegas et al., 2006; Shull et al.,
2008). This has led to the development of the International
Workshop on Replication in ESE Research (RESER).13 The
workshop aims to establish a platform for ESE researchers
where they can debate theoretical foundations, methods and
results of replication studies.

González-Barahona and Robles (2012) highlighted the
importance of reproducibility as the desirable property of re-
search studies. They provided a systematic methodology for
assessing the reproducibility of ESE studies based on data
retrieved by mining software repositories. Similarly, An-
chundia and Fonseca C. (2020) identified tools to maximise
reproducibility in SE experiments and analysed replication
from new perspectives, namely, communication, knowledge
management and motivation. Apart from working on re-
producibility from a new point of view, their research is
limited to the reproducibility of ESE research and does
not mention the reproducibility issues in scientific software
across disciplines. Rodríguez-Pérez et al. (2018) studied
reproducibility and credibility in ESE using the case study
of the popular SZZ (Śliwerski, Zimmermann and Zeller)
algorithm (Śliwerski et al., 2005), but their findings are
limited to ESE research and are solely based on an isolated
study of primary research using the SZZ algorithm.

Piccolo and Frampton (2016) assessed the strengths and
limitations of various tools, techniques and strategies to
achieve better computational reproducibility. Trisovic et al.
(2020) approached the integration of data repositories and
reproducibility tools to ensure computational reproducibil-
ity. Samuel and König-Ries (2022) assessed the understand-
ability of scientific experiments as a critical reproducibility
component. Still, none identified specific types of smells,
causes, or techniques to manage them in the context of RpD.

3. Methodology
We conduct a Systematic Literature Review (SLR) ac-

cording to the guidelines proposed by Kitchenham and Char-
ters (2007). SLR is a systematic and auditable method to
identify and interpret the evidence available in primary
studies. The process of SLR is summarised in Figure 1 and
explained in the following subsections.

3.1. Research Questions (RQs)
This study aims to characterise RpD in scientific soft-

ware, thus identifying and consolidating existing knowl-
edge on scientific software reproducibility across all com-
putational science disciplines. The study addresses reported
issues, developers’ challenges, and proposed solutions by
investigating related primary studies. We formulate the fol-
lowing RQs:

13https://dl.acm.org/doi/10.1145/1810295.1810429

RQ1: Which primary studies have approached repro-
ducibility and its aspects in scientific software, and how can
they be categorised?

We believe ours to be the first SLR in the area of sci-
entific software reproducibility; therefore, categorising and
organising existing literature is the first step to guide our
further work. We first identify the number of primary studies
published on scientific software reproducibility per year and
per journal/conference, as performed by Rios et al. (2018)
in their systematic mapping studies. We also quantify the
number of studies published per scientific discipline. This
information represents the extent to which each scientific
discipline contributes towards solving the reproducibility
issues. Moreover, it helps us identify the variations in the
manifestation of RpD across various scientific domains by
combining the results from RQ2 and RQ3.

RQ2: What are the main categories of issues that con-
tribute to RpD in scientific software?

Many initiatives have been undertaken to report issues
and developer’s challenges that contribute towards RpD in
scientific software projects (Ivie and Thain, 2019; Brinck-
man et al., 2019). We organise these to provide a structured
overview and to enable the research community to share a
common vocabulary. This research question identifies and
defines the categories of issues that have gained the research
community’s attention, thus providing a high-level taxon-
omy of RpD items and a formal definition of RpD.

RQ3: What are the underlying causes and effects of RpD
in scientific software?

Identification of TD is not only about understanding how
and where it occurs but also analysing its causes and their
corresponding effects (Melo et al., 2022; Rios et al., 2020).
Rios et al. (2018) report that ‘causes for TD insertion in
software projects’ are little explored in academic research.
Therefore, this question aims to identify the causes attributed
towards the emergence and identification of RpD in scientific
software projects. To answer this RQ, we perform an aspect-
wise analysis of extracted data, thus presenting a compre-
hensive list of RpD causes and their effects, aiding in its
identification, measurement and prevention.

RQ4: What solutions are presented in the existing litera-
ture to tackle reproducibility problems in scientific software?

To resolve reproducibility issues, scientists have opted
for several solutions to mitigate the reproducibility prob-
lem. Several guidelines have been proposed (Botvinik-Nezer
and Wager, 2023; Maghami et al., 2023). Specialised tools
and frameworks have been developed, such as WholeTale
(Brinckman et al., 2019), Galaxy Framework (Goecks et al.,
2010), as well as utilising existing software development
tools and technologies (Ziemann et al., 2023; Canon, 2020).
This RQ aims to identify and organise these solutions to
support researchers and practitioners in preventing RpD in
scientific software projects.

In wrapping up, according to Avgeriou et al. (2016),
TD has three main components: debt items (cause), interest
(effect), and prevention (principal). Hence, by answering RQ
1, 2, 3, and 4, we can characterise reproducibility as a type
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Figure 1: A systematic literature review process as we have adopted for characterising Reproducibility Debt, based on the guidelines
proposed by Kitchenham and Charters (2007).

Table 1
Inclusion and Exclusion Criteria (IEC) for selecting primary
studies.

Code Criteria Description

I.1 Paper discusses open science, reproducibility and/or
replicability (under this name or another) of scientific
software (or related aspects) in any discipline.

I.2 The paper was published in a peer-reviewed academic
venue.

I.3 Extended versions of conference papers; albeit, if the
conference version is at least 30% different from its
extended version, we keep both.

I.4 The articles published in any year.

E.1 The paper discusses open science but does not approach
reproducibility or replicability.

E.2 Studies published in the form of abstracts/extended
abstracts, keynotes, tutorials, Posters.

E.3 Venue is not peer-reviewed.

of TD in scientific software using evidence from existing
literature.

3.2. Search Strategies
A broad search strategy in selecting the primary liter-

ature is instrumental to our review. We employ a Control
Group Support Process adopted by Anchundia and Fon-
seca C. (2020) for evolving the search string. It is then
necessary to define inclusion/exclusion criteria (IEC) at the
beginning of the study to ensure the quality and relevance of
the work being considered.

3.2.1. Inclusion/Exclusion Criteria
IECs are defined based on our research objectives to en-

sure the inclusion of peer-reviewed literature that discusses
open science, reproducibility and/or replicability (under this
name or another) of scientific software (or related aspects) in
any discipline and correspondingly set aside all the venues
domain experts have not reviewed. Moreover, no exclusion
was done based on publication year to mitigate the threat of
missing relevant papers. IECs are summarised in Table 1.

3.2.2. Control Group Support Process
After defining the IEC, we set up a Control Group (sem-

inal papers discussing scientific software reproducibility)
based on our research objectives following the IECs. Control

papers (CPs) were studied in detail: (1) to extract the relevant
terms for synthesising a search string; (2) to identify research
gaps, thereby establishing the foundation for our study; (3)
to verify that the search process easily finds the CPs. Each
control paper has been assigned a T.code following this
scheme: CP-01, where CP means control paper and 01 is used
for indexing (See Table 2). A brief overview of each paper
is given below:

In CP-01 González-Barahona and Robles (2012) argued
that Empirical Software Engineering (ESE) studies, those
based on data retrieved from development repositories, are
suitable for reproduction, as data and tools employed in these
studies can be easily shared or described in detail. How-
ever, they identified that many studies in the ESE area are
not reproducible, leading them to study factors (elements)
that impact the reproducibility of ESE research. Based on
the identified elements (data source, retrieval methodology,
raw dataset, extraction methodology, study parameters, pro-
cessed dataset, analysis methodology, result dataset), they
proposed a methodology for evaluating the reproducibility
of a study in the ESE domain.

In CP-02 Anchundia and Fonseca C. (2020) identified
tools that maximise results’ reproducibility in SE experi-
ments based on analysis of 40 primary studies. They anal-
ysed replication from a new perspective, i.e., communi-
cation, knowledge management and motivation. They ar-
gued that tools and practices depend on the experiment
domain (human- and technology-oriented experiments) and
still lack acceptability and usability among ESE researchers,
adversely affecting ESE results’ reproducibility.

In CP-03 Rodríguez-Pérez et al. (2018) studied repro-
ducibility and credibility in ESE using the case study of SZZ
(Śliwerski, Zimmermann and Zeller) algorithm (Śliwerski
et al., 2005), widely used to detect the origin of the bug.
The authors conducted an SLR to evaluate studies that use
the SZZ algorithm. They reviewed a total of 187 papers
to analyse whether the aspects of reproducibility were ad-
dressed, reporting limitations and use of improved versions
of the algorithm. They observed that ESE research lacks
reproducibility of results, concluding that results are not
credible and dependable. Their research establishes a need
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Table 2
The set of control papers used to obtain the relevant terms for the formulation of Search String.

T.Code Author Title Publication
Year

CP-01 (González-Barahona and Robles,
2012)

On the reproducibility of empirical software engineering studies
based on data retrieved from development repositories

2011

CP-02 (Anchundia and Fonseca C.,
2020)

Resources for Reproducibility of Experiments in Empirical Soft-
ware Engineering: Topics Derived From a Secondary Study.

2020

CP-03 (Rodríguez-Pérez et al., 2018) Reproducibility and credibility in empirical software engineering:
A case study based on a systematic literature review of the use
of the SZZ algorithm.

2018

CP-04 (Krafczyk et al., 2019) Scientific Tests and Continuous Integration Strategies to Enhance
Reproducibility in the Scientific Software Context.

2019

CP-05 (Ivie and Thain, 2019) Reproducibility in Scientific Computing. 2018
CP-06 (Brinckman et al., 2019) Computing environments for reproducibility: Capturing the

"Whole Tale".
2018

CP-07 (Raghupathi et al., 2022) Reproducibility in Computing Research: An Empirical Study. 2022

for improvement in ESE research and provides reproducibil-
ity guidelines for researchers and reviewers to address this
problem.

In CP-04 Krafczyk et al. (2019) proposes scientific tests
and continuous integration strategies to enhance the repro-
ducibility of scientific software. The concept of scientific
black box testing was introduced, comparing computational
scientific results with those published to ensure their reliabil-
ity and accuracy. They also proposed production-minimised
computational experiments to run in a continuously inte-
grated environment and publish the results with the main
results. Moreover, the authors introduced the concept that
a “scientific test produces computational results from a
published article”.

In CP-05 Ivie and Thain (2019) stated that publishing
the source code and relevant data with sufficient detail
permits other researchers to understand one’s methodology
and reproduce results. However, in practice, there are various
technical and social barriers to achieving reproducibility in
scientific computing, e.g., computing environment, source
code, naming issues, and developers’ motivations. They
performed a detailed survey on scientific reproducibility,
highlighting technical barriers in reproducing workflows and
analysing extant approaches to achieve reproducibility.

In CP-06 Brinckman et al. (2019) presented “Whole
Tale” software, a reproducible research environment which
facilitates the linkage of code and data with publication. The
Whole Tale aims to redefine the model through which com-
putational and data-driven science is conducted, published,
verified and reproduced. It supports the entire research pro-
cess, from pre-publication to post-publication, by exposing
the salient details via access to the persistent versions of
the code and data used in the research. The Whole Tale
strengthens the three layers of scholarly publication, i.e.,
data, process and computational analysis. Its architecture
uses a range of flexible APIs to enable users to ingest and
manage data and front ends and capture, replay, and extend
publications.

In CP-07 Raghupathi et al. (2022) assessed the present
state of reproducibility of research in computing based on

previous research across all domains. They identified 25
variables relevant to reproducibility and categorised them
into three factors, i.e., method, data and experiment, to mea-
sure three different degrees of reproducibility. The authors
analysed almost 100 research articles and found that none
of them documented all variables. However, only a few
variables for each factor were documented, and the repro-
ducibility score decreased with an increased requirement for
documentation. Therefore, they argued that reproducibility
in computing can only be increased as researchers prioritise
reproducibility and utilise methods that ensure reproducibil-
ity; also, the publishers should increase their focus on the
reproducibility aspects of research articles.

Although the work presented by these CPs has made
a significant contribution in terms of factor identification,
tools, methodology, and guidelines for reproducibility, none
of them discern the issues of reproducibility as a TD. Also,
most research is specific to a particular domain, resulting
in isolated solutions. Therefore, a systematic approach to
classify reproducibility as a type of TD (identifying all
underlying causes, effects and prevention strategies) across
all scientific disciplines remains a research gap.

3.2.3. Search String
While reading and analysing CPs, we identified and ex-

tracted the terms used to describe reproducibility in scientific
software and other closely related concepts. To mitigate the
threat of missing relevant papers, the evaluation criteria for
the search string was defined at the start inspired by the work
from Anchundia and Fonseca C. (2020), i.e., (1) the number
of papers found is neither too large (More than 5k) nor too
small (less than 50); (2) papers included in the control group
are shown within 1-3 pages from top search results; (3) the
titles of the searched studies are relevant to the research
objectives.

Subsequently, we formulated and tested various search
strings using combinations of all identified terms, i.e.,
reproducibility, reproduce, reproducible, replicability,

replicable, repeatability, repeatable, transparency, open

science, open source, open code, scientific software,
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Table 3
Quality Assessment Criteria

ID Quality Criteria (QC) Score

QC1 The Paper discusses reproducibility issues and their solu-
tions/practices, in the context of scientific software.

Yes=1, No=0

QC2 The objective of the research is clearly stated. Yes=1, No=0
QC3 Is the research design appropriate to meet the objectives? Yes=1, No=0
QC4 The research results and discussion support the objectives. Yes=1, No=0
QC5 The related work section of the paper should be presented. Yes=1, No=0
QC6 Paper cites at least 5 papers related to reproducibility. Yes=1, No=0

scientific workflows, computational software, scientific

computing. Since the default search options for different
digital libraries work differently, we experimented with all
combinations of search strings in all digital libraries and
observed the outputs. We observe in our control papers that
the term reproducible and reproduce always co-occur with
reproducibility, so we use only reproducibility in the final
search string.

When applied to titles and full text, the following com-
bination of keywords using AND and OR operators give the
optimum results according to our evaluation criteria, i.e., a
reasonable number of papers, control papers appeared in top
search, and titles seems relevant to our research objectives.

(“reproducibility” OR “replicability” OR

“repeatability”) AND (“open source” OR “open

science” OR “open code”) AND (“scientific software”

OR “scientific computing” OR “computational

software”)

3.2.4. Study Search
We conducted our search in September 2022 and re-ran it

in January 2024, using a range of digital libraries, including
ACM Digital Library, IEEE Xplore, Elsevier ScienceDirect,
Wiley, Taylor & Francis, and SpringerLink. These selec-
tions were based on recommendations from prior studies
in SE (Kitchenham et al., 2010; Petersen et al., 2015).
Additionally, to prevent publisher bias and ensure compre-
hensive coverage, we included Google Scholar, following
guidelines by Wohlin (2014). In our Google Scholar search,
we considered papers from the top 50 pages. Our search
process yielded a total of 2198 papers, which were collected
using Zotero, a reference management system designed to
facilitate the organisation and handling of academic papers.

3.3. Selection Process
The selection of primary studies involves the following

steps:

1. Duplicate Removal: We first removed the duplicates,
resulting in 2004 papers ready for the next filtering
round.

2. First Filtering: We analysed the metadata (title, key-
words, and venue) of each paper in comparison to the
inclusion criteria I2, I3 and E2, E3 (See Table 1). At
this point, we did not use I1 or E1 since it was not
possible to know whether the article under evaluation

discusses open science, reproducibility and/or repli-
cability of scientific software based on the metadata
alone.

3. Second Filtering: The abstracts of the papers surviv-
ing the first filtering were subjected to criteria I1 and
E1 in the second filtering. I2, I3, E2, and E3 were not
applied at this stage, as they had already been applied
in the first round. Any article with a reasonable degree
of doubt regarding its relevance to the research topic
was kept for the next round of filtering.

4. Quality Assessment: We evaluated the studies’ quality
to ensure that the final selection list included the most
relevant papers to our research objectives. The papers
selected after the second filtering were assessed based
on the quality criteria (QC) checklist presented in
Table 3. We developed 6 QCs following the qual-
ity checklist template provided by (Kitchenham and
Charters, 2007). Quality score was calculated for each
primary study in the pool by a complete reading of the
manuscript. Following the recommendations of Lima
et al. (2019), the paper must satisfy a minimum of four
QCs to qualify for inclusion in the final selection of
this SLR, i.e., it had to achieve more than 50% of the
criteria.
We allocated a maximum score of 1 to every QC.
QC1 strongly supports our primary research question
as it allows us to include studies discussing issues con-
tributing towards RpD and their proposed solutions.
QC2, QC3 and QC4 further supplement QC1 by eval-
uating the quality of the paper based on its research
objectives, design and results. We kept the flexibility
by adding QC5 and QC6, as we worked with pa-
pers from multiple disciplines with different structures
and published in venues with different requirements.
Therefore, any primary study not meeting certain cri-
teria but still conveying meaningful information about
reproducibility issues and reaching a quality score of
4 was included as a part of the study. The reason for
taking QC5 as an optional criterion is that many short
peer-reviewed papers provide meaningful information
but are limited in related work sections. QC6 is also an
optional criterion because many non-SE venues may
discuss reproducibility without citing anything related
to it. Moreover, it mitigates the threat of losing any
paper discussing reproducibility based on previous
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Figure 2: Number of included articles during the study selection process.

literature but not structured well in terms of research
objectives and results.

5. Snowballing: We applied a snowballing (forward and
backward), to find relevant papers that were poten-
tially missed out, and effectively mitigate this threat
(Wohlin, 2014). In backward snowballing, the ref-
erence list of already selected papers was used to
identify new papers. In forward snowballing, we used
Google Scholar to search for new papers based on
the list of already included papers. All obtained pa-
pers were selected by applying the same three-stage
filtering process and selection criteria. This process
yielded 15 new papers after 1st iteration, 1 paper in
2nd iteration and no new paper in 3rd iteration.

The study search, selection and filtering process is sum-
marised in Figure 2

Filtering Protocol: During all three stages of filtering,
the first author independently analysed metadata, abstracts
and manuscripts. All results were reviewed and discussed
between all authors of this paper in weekly meetings to
mitigate researcher bias. Note: Due to the open nature of
the discussion, inter-rater agreement was not calculated. To
keep the filtering process transparent, the Zotero library can
be viewed here 14.

3.4. Data Extraction
Data extraction is a critical element of the systematic

review process, where required text and data from selected
primary studies are collected consistently and explicitly
(Cruzes and Dyba, 2011). To answer RQs mentioned in Sec-
tion 3.1, we extracted data (text, phrases) from the selected
primary studies according to the template presented in Table
4. To strengthen the validity of our data extraction process
and to minimise the research bias, we used a systematic
approach for data extraction, discussed in the next paragraph.

After selecting primary studies, we designed the ex-
traction form in a spreadsheet format. During this stage,
control papers were re-analysed to derive fields (categories)
for data extraction. All fields were discussed to clarify which

14https://www.zotero.org/groups/4762953/test_repro/library

information should be included in a particular field. The
original data extraction began once consensus was achieved
on the extraction strategy. However, we remain open to
adding new categories (columns in the spreadsheet), as new
data/categories that might be substantial to answer RQs will
be identified while reading manuscripts. Moreover, these
refined categories help us directly answer RQ2, i.e., high-
level taxonomy of RpD items, the presence of which hinders
the reproducibility of scientific outcomes.

Extraction Protocol: During extraction, the first author
independently extracts data from selected primary studies,
which the second author reviewed. All authors met weekly
and discussed discrepancies and feedback on the data ex-
traction and classification (Kitchenham and Charters, 2007).
During manuscript reading, we also considered where the
information extracted came from; for example, some came
from the methodology section, some from the results sec-
tion, and some from a conclusion and discussion part. We
also refined a guideline for reading the paper over time. Data
extraction was done by copy-pasting fragments of data from
paper into a spreadsheet. The data extraction file is shared in
the replication package to maintain transparency.

3.5. Data Synthesis and Analysis
We conducted both qualitative and quantitative analyses

on the extracted data to address the proposed RQs. The
quantitative analysis of the characteristics of primary studies
(publication year and venue) enabled us to answer RQ1.
To answer RQ2, RQ3 and RQ4, we first performed the
qualitative analysis of gathered reproducibility issues and
solutions. Later, we performed a quantitative analysis of
the emerged themes to describe their manifestation more
precisely and accurately. This includes calculating frequen-
cies or percentages of their occurrence in selected primary
studies to quantify the prevalence and severity.

3.5.1. Qualitative Analysis Process
We used an open coding approach for qualitative analy-

sis, which is a part of grounded theory Corbin and Strauss
(2008). Using this approach, we aim to produce a set of
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Table 4
Data Extracted from Primary Studies

RQ Data Item Meaning

RQ1 Study ID Unique identifier assigned to each primary study.
RQ1 Title Title of the article under study.
RQ1 Year Year in which research article is published.
RQ1 Venue Venue at which article is published i.e., Journal or Conference.
RQ1 Research Domain Refers to the specific field or area of study that the paper is focused on.
RQ1 DOI Unique Digital Object Identifier assigned to each manuscript.

RQ2, 3 Tools-centric issues Issues associated with the infrastructure, tools, and technologies used to develop
and store scientific software.

RQ2, 3 Human-centric issues Issues associated with individuals involved in scientific research.
RQ2, 3 Process-centric issues Issues related to inadequate application of Software Engineering practices in

scientific software development.
RQ2, 3 Documentation issues Issues related to incomplete or unclear documentation, i.e., missing details about

data sources, software dependencies, or specific configurations.
RQ2, 3 Legal issues Issues related to the use of proprietary software or data. Also, licensing and

accessibility issues of open-source.
RQ2, 3 Version-centric issues Issues related to the version of software, code, or data used in the research.
RQ2, 3 Code-centric issues Issues related to the development, organisation, documentation, and dissemination

of scientific software code.
RQ2, 3 Data-centric issues Issues related to the processing, storage, and dissemination of scientific data.

RQ4 Tools-centric
solutions

Tools and technologies to solve reproducibility-related problems.

RQ4 Human-centric
solutions

Human-centric guidelines or skills required to enhance reproducibility in scientific
research.

RQ4 Process-centric solu-
tions

Software Engineering practices to achieve reproducibility of results.

RQ4 Documentation-
centric solutions

Documentation practices or guidelines to ensure rigour and reproducibility in
scientific research.

RQ4 Solutions for legal is-
sues

Guidelines or list of licences to overcome legal issues related to scientific software
and data.

RQ4 Version-centric
solutions

Guidelines or tools to resolve versioning issues.

RQ4 Code-centric solutions Guidelines and best practices related to the development, organisation, and
documentation of scientific software code.

RQ4 Data-centric solutions Guidelines and best practices related to the processing, storage, and dissemination
of scientific research data

concepts that fit our extracted data following a three-stage
coding process.

1. Line-by-line codes: In this phase, we generated line-
by-line codes from the extracted data. Since the data
had been previously categorised, each category was
coded individually.

2. Axial codes within categories: In the second stage,
we performed an aspect-wise analysis of all emerged
open codes within the categories and separated them
into higher-level categories of causes and effects of
RpD. This stage was iterative until we merged all
codes obtained in the first stage into higher-level axial
codes.

3. Merging and moving of axial codes across categories:
During this stage, we revisited axial codes across all
categories to check their relation with other codes.
We performed two parallel operations during this

phase. First, closely related axial codes across cate-
gories were merged based on common themes and
citations supporting those themes to avoid duplication
of codes and citations. Second, the final obtained axial
code was moved to the most relevant category. For
example, Unclear descriptions of parameter settings
used in experiments, simulations, or software tools
in Documentation-centric issues was merged with In-
adequately documented dependencies, versions and
workflows in Tools-centric issues as Inadequately doc-
umented parameter settings, dependencies, versions
and workflows and was moved to Documentation-
related issues. All line-by-line codes were revisited
to check their relevance with merged axial codes to
mitigate the threat of merging irrelevant codes at this
stage.
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Figure 3: Study Distribution by Year and Publication Venue

Open Coding Protocol: Qualitative coding was performed
by the first author and reviewed by the second author. Final
codes in each category (both line-by-line and axial) and all
merged codes across categories are reviewed and discussed
among all authors. All axial codes were assigned unique IDs
before merging, for example, DC1: Unclear descriptions of
parameter settings used in experiments, simulations, or soft-
ware tools and T3: Inadequately documented dependencies,
versions and workflows. New code emerged after merging
as DC1/T3, which was kept unique to maintain traceability
in the replication package. All analysis and coding files are
shared in the replication package.

New Search 2024: The initial study search was conducted
in September 2022, and results are reported in 2024. To
mitigate the threat of missing any relevant primary studies
published during 2023, we ran another search in January
2024 after completing qualitative coding of already ex-
tracted data. We used the same search string and three-
stage filtering process to select the eight new primary studies
(Botvinik-Nezer and Wager, 2023; Wagner et al., 2024; Zhu
et al., 2023; Maghami et al., 2023; Choi et al., 2023; Chan
and Schoch, 2023; Ivimey-Cook et al., 2023; Ziemann et al.,
2023). However, we did not extract data from these studies
into a spreadsheet; instead, codes were directly applied to the
text in the manuscript.

4. Results
In this section, we present the evidence found in the SLR

to answer the RQs presented in Section 3.1.

Figure 4: Number of primary studies per scientific discipline

4.1. RQ1: Which primary studies have approached
reproducibility and its aspects in scientific
software, and how can they be categorised?

The identification and filtering of studies discussing
reproducibility in scientific software is summarised in Figure
2. We applied a three-stage filtering process to select 214
primary studies from seven digital libraries based on pre-
defined IECs and QC. Figure 3 presents the distribution of
selected primary studies, both over year and publication
venue till January 2024. The graph shows that the first
selected study was published in 1992, and only 19 studies
were recorded till 2011. Almost 91% of selected studies were
published after 2011. With this, we can say that reproducibil-
ity was recognised as a plausible issue among the research
community, primarily after 2011. The maximum number of
studies on reproducibility were published in 2019 (around
29), and the numbers slightly decreased afterwards.
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When considering the distribution of studies based on
publication venue, a relatively high percentage was identi-
fied in Journals (65% or 140 studies). Conferences started
taking an interest in reproducibility after 2011. The year
2019 stood out with a maximum of 14 conference papers;
the number started decreasing afterwards, with only 19
publications until 2022. From the trend, we can say that
journals are more interested in publishing work relevant to
computational reproducibility.

One of the goals of this work is to identify researchers’
interest in computational reproducibility across various sci-
entific disciplines and the types of reproducibility issues
reported by them. In this regard, a text describing the sci-
entific discipline was extracted from the paper and recorded
in the spreadsheet. We used Australian and New Zealand
Standard Research Classification (ANZSRC) Field of Re-
search (FoR) codes to classify and present the collected
literature meaningfully to guide our analysis. The categories
in the classification include major fields and related sub-
fields of research. The extracted data determined the re-
search field and papers with related sub-fields were merged
into higher-level categories of the major field according to
ANZSRC classification guidelines. For example, research
articles from software engineering, machine learning, and
high-performance computing were merged into Information
and Computing Sciences. Biomedical and Clinical articles
include neuroimaging, bio-informatics, anatomy, and phys-
iology; Physical Sciences include astronomy, high energy
physics, plasma physics, remote sensing, and molecular
dynamics; and Earth Sciences include hydrology and ocean
science. All other manuscripts discussing computational
reproducibility, in general, were grouped into one generic
category.

We identified that 214 primary studies were distributed
among nine main scientific disciplines. We also identified
that papers were written by almost 190 different authors
(we record the first author’s name only), showing a broad
interest in this subject across various disciplines. The graph
in Figure 6 shows that Information and Computing Sci-
ence has the highest number of papers highlighting repro-
ducibility issues, with 72 papers (approximately 33%). This
indicates a significant focus on reproducibility within this
field. Following closely behind Information and Computing
Science, Biomedical and Clinical Science have 26 papers
addressing reproducibility issues, highlighting the impor-
tance of reproducibility in medical research. We identified
26 primary studies discussing computational reproducibility
in a generic manner covering all computational science
disciplines which involve complex simulations and mod-
elling, where reproducibility is essential for validating re-
sults and ensuring their reliability. Other scientific fields also
have their contribution in highlighting and addressing re-
producibility issues, i.e., Biological Sciences has 19 papers;
Physical and Earth Science follows with 17 and 15 papers;
Economics and Mathematics has 12 papers collectively;
Environmental Science follows with 11 papers; Engineering

Figure 5: Type of reproducibility issues mentioned in primary
studies

has 9 papers. Psychology has the lowest number of papers,
approximately 3% of the total.

4.2. RQ2:What are the main categories of issues
that contribute to RpD in scientific software?

Prior work by Izurieta et al. (2016) demonstrated that
identifying TD items, i.e., a list of the bad practices or
issues that create debt, is usually the first step in identifying
any TD in software systems. We, therefore, categorised the
issues or bad practices contributing towards RpD into seven
main categories. This classification gives us the high-level
taxonomy of RpD items as follows:

1. Data-Centric Issues: These are related to scientific
data processing, storage, and dissemination.

2. Code-Centric Issues: These are related to develop-
ing, organising, and disseminating scientific software
code.

3. Documentation-Centric: Incomplete or unclear doc-
umentation can hinder understanding the processes
required to reproduce research findings. This includes
missing details about data sources, software depen-
dencies, or specific configurations used in analysis.

4. Infrastructure and Tools-Centric Issues: These are
associated with the infrastructure, tools, and technolo-
gies used to develop and store scientific software.

5. Versioning Issues: Arise when the version of soft-
ware, code, or data used in the original research is
unavailable or incompatible with other software used
in replication.

6. Human-Centric Issues: These are associated with in-
dividuals involved in scientific research, including
software developers, domain researchers, reviewers,
and funding organisations.

7. Legal Issues: Refers to the intellectual property and
ownership issues in open research software and data.
Also, proprietary software or data can create repro-
ducibility barriers, especially when others lack access
to the same tools or licenses.
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The quantitative analysis of all emerged codes under
these categories gives us the representation of their occur-
rence in selected primary studies. The graph in Figure 5
shows the types of issues contributing towards RpD and
the total number of primary studies mentioning them, either
directly (self-identified) or indirectly (cited others as a base-
line of their work). It is observed that issues and challenges
related to the people involved in the scientific software
development process are mentioned in 163 primary studies.
Following human-centric issues are tools and infrastructure-
related issues highlighted by 123 primary studies and subse-
quently data-centric (96 studies), documentation-centric (93
studies), code-centric (53 studies), legal issues (39 studies),
and finally, versioning issues (27 primary studies). We ob-
served that, on average, at least three reproducibility issues
are mentioned in each primary study.

This taxonomy of RpD items helped us to define RpD as:

Reproducibility Debt (RpD) is a type of technical
debt primarily impacting scientific software. It refers
to the accumulative issues and challenges that hinder
the ability to reproduce scientific outcomes, stem-
ming from challenges inherent in scientific software
code and data, including development, organisation,
dissemination, and documentation. RpD may accu-
mulate when researchers and scientific software de-
velopers engage in sub-optimal activities, often for
short-term benefits, which ultimately compromise the
reproducibility of research outcomes.

4.3. RQ3: What are the underlying causes and
effects of RpD?

In accordance with the research conducted by Li et al.
(2015); Avgeriou et al. (2016); Rios et al. (2018), a pivotal
factor in the identification of TD is the provoking elements
that caused its emergence. In this regard, this question aims
to identify the main factors (causes) of the emergence of
RpD and their corresponding effects to facilitate its iden-
tification and to present the main indicators of its occur-
rence. After the analysis, we identified 100 codes which
are classified as causes and effects of RpD, based on the
evidence obtained in the recorded data. In total, 37 codes
were classified as causes of RpD, and 63 codes appeared as
their effects. The complete catalogue of causes and effects
of RpD are shown in Table 5 along with their evidence of
occurrence in selected primary studies. We classified them
under seven main categories discussed in RQ2.

Data-Centric: In total, five data-related causes associ-
ated with the emergence of RpD appeared with their eight
corresponding effects, presented in the first block of Table
5. We identified that the ripple effect of non-systematic data
processing and analysis manifests in the form of unorgan-
ised data and analysis files. Moreover, the consequence of
non-systematic approaches extends to limited traceability
of data and metadata. Another listed RpD item incomplete
or selective reporting of research data sets is driven by

constraints in storage space, a desire for taking full advan-
tage of data, or inadvertent oversight, thus introducing RpD
into the research landscape. This results in low-quality data
sets with missing values, thus frustrating other researchers
while reproducing and building upon that data. The absence
of standardised practices, i.e., non-standardised data and
metadata formats for storage, sharing and reuse, creates a
fragmented landscape, making it challenging for researchers
to seamlessly share, understand, and reuse each others’ data.
Moreover, the consequential effect of employing varying
data and metadata formats manifests as limited data inter-
operability.

Code-Centric: The second block of the table 5 presents
five code-centric causes attributed towards the emergence
of RpD and their eight effects. RpD is compounded in
scientific software when researchers employ intricate algo-
rithms and complex code, often necessitated by the com-
plexity of their research questions. As a result, a layer of
complexity is added, hindering subsequent efforts to reuse
the code. Other code-related causes of RpD are lack of
good programming practices, lack of comprehensive testing
and formal code review processes resulting in low-quality
and ill-maintained code. Moreover, RpD manifests when
researchers rely on software or libraries that are either
unstable or lack proper maintenance. Scientific software
developers often lack awareness about the importance and
process of code-sharing and do not prioritise systematic
code-sharing practices.

Documentation-Centric: causes and effects attributed
towards the emergence and identification of RpD are pre-
sented in block three of Table 5. The first RpD item in this
block is related to the insufficient or outdated documenta-
tion of data involved in scientific research, which manifests
in the form of missing details about data pre-processing,
analysis and loss of data provenance information. More-
over, inadequately documented workflows and dependencies
also incorporate RpD, resulting in a limited understand-
ing of developed software for future use. Moreover, RpD
is incurred when researchers employ manual and ad-hoc
methods for preparing and sharing documentation. The re-
sulting inconsistent and unstructured documentation affects
the verifiability, reusability and maintainability of developed
software. The restricted length and format of research arti-
cles in various conferences and journals is another cause of
RpD, manifesting in the form of incomplete descriptions of
computational steps in scholarly publications.

Tool-Centric: Several causes attributed towards the
emergence and identification of RpD relevant to the soft-
ware/hardware tools and technologies used to develop and
execute scientific software are presented in block 4 of Table
5. RpD emerges if necessary dependencies required for the
build process are missing or get updated over time. This
restricts others’ ability to re-execute a program, or results are
inconsistent across every new build. Similarly, inconsistent
software/hardware settings in different computing environ-
ments by original researchers and those trying to reproduce
may cause RpD to manifest as unexpected behaviour or
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Table 5
Causes attributed towards emergence of RpD and their corresponding effects

ID RpD Causes Effects (Interest)

1.0 Data-Centric
1.1 Non-systematic data processing and analysis Unorganised data and analysis files, Limited

traceability of data and metadata
Huppmann et al. (2019); Gil et al. (2016); Orozco et al. (2020); Marwick (2017); Ram (2013); Millman
and Pérez (2018); Davis-Turak et al. (2017); Harrell et al. (2022); Lifschitz et al. (2011); Rokem et al.
(2017); Peng (2011); Gentleman and Lang (2007); Lefebvre and Spruit (2023); Taubert and Bücker
(2017); Peng et al. (2006); Bell et al. (2017); Jimenez et al. (2017b); Akhlaghi et al. (2021); Stevens
(2017)

1.2 Incomplete or selective reporting of datasets Frustrating process of replication, Missing values,
Low-quality datasets

Krafczyk et al. (2019); Goble et al. (2013); Wittek et al. (2021); Bell et al. (2017); Bugbee et al. (2020);
Waltemath and Wolkenhauer (2016); Vilhuber (2020); Choi et al. (2023)

1.3 Non-standardised data and metadata formats for
storage, sharing and reuse

Inconsistent results

Brinckman et al. (2019); Lefebvre and Spruit (2023); Feger et al. (2020); Zhao et al. (2018); Waltemath
and Wolkenhauer (2016); Wilson et al. (2017); Mecum et al. (2018); Alencar et al. (2018); Peer et al.
(2021); Rokem et al. (2017); Gorgolewski et al. (2017); Tierney and Ram (2021); Marwick (2017); Kim
et al. (2018); Yu et al. (2016); Hinsen (2011); Goecks et al. (2010)

1.4 Lack of an integrated and trusted infrastructure for
storing, processing and distributing growing volume
of data

Uncertain long-term data availability

González-Barahona and Robles (2012); Ivie and Thain (2019); Brinckman et al. (2019); Huber et al.
(2021); Garrett-Ruffin et al. (2021); Spencer Smith et al. (2016); Brunsdon and Comber (2020); Piccolo
and Frampton (2016); Davis-Turak et al. (2017); Feger et al. (2020); Bell et al. (2017); Bugbee et al.
(2020); Kanwal et al. (2017); Bánáti et al. (2015); Jenkins et al. (2016); Cook et al. (2012); Jansen
et al. (2019); Mcdougal et al. (2016); Alencar et al. (2018); Fiore et al. (2018); Gorgolewski et al.
(2017); Tierney and Ram (2021); White et al. (2019); Leek and Jager (2017); Chen et al. (2019); Yu
et al. (2016); Ibanez et al. (2018); Bjorn et al. (2019); Gomes et al. (2022); Peng (2011); Gentleman
and Lang (2007); Howe (2012); Maghami et al. (2023)

1.5 Heterogeneous and complex datasets Challenging data understanding and re-usability
Raghupathi et al. (2022); Garrett-Ruffin et al. (2021); Denaxas et al. (2017); Eckersley et al. (2003);
Mendez et al. (2020); Brunsdon and Comber (2020); Bell et al. (2017); Bugbee et al. (2020); Wilson
et al. (2017); McPhillips et al. (2019); Stodden and Miguez (2014); Tierney and Ram (2021); Marwick
(2017); Yu et al. (2016); Blinov et al. (2021); Gomes et al. (2022); Peng et al. (2006); Goecks et al.
(2010)

2.0 Code-Centric
2.1 Complex algorithms and code Limited re-usability of code, Inability to track

code versions
Orchard and Rice (2014); Morrison (2018); Garcia-Silva et al. (2019); Lupelli et al. (2015); Bilke et al.
(2019); Poldrack et al. (2019); Fernandez-Prades et al. (2018); Cook et al. (2012); LeVeque (2009);
Hutton and Henderson (2018); Boettiger (2015); Dylan Chapp (2020); Jimenez et al. (2017b); Peng
(2011); Krafczyk et al. (2019); Rollins et al. (2014)

2.2 Lack of good programming practices by developers
and lack of formal code review process

Low-quality code and non-reproducible results

Niso et al. (2022); Pernet and Poline (2015); Denaxas et al. (2017); Chue Hong (2018); Bast (2019);
Alarid-Escudero et al. (2019); Widder et al. (2019); Bahaidarah et al. (2022); Gomes et al. (2022);
Botvinik-Nezer and Wager (2023); Chan and Schoch (2023); Ivimey-Cook et al. (2023)

2.3 Unstable or ill-maintained software or libraries Critical issues or bugs may remain unaddressed,
Lack of compatibility with the latest updates

Chue Hong (2018); Fernandez-Prades et al. (2018); Di Meglio et al. (2012); Dalle (2012); Pörtner et al.
(2018); Cruz et al. (2018); Kim et al. (2018); Gille et al.

2.4 Lack of awareness about the importance and process
of code-sharing

Low priority accorded to share-ability of code by
researchers, Use of non-systematic approach and
methods for code sharing on demand

Rollins et al. (2014); Hinsen (2011); Isdahl and Gundersen (2019); Mcdougal et al. (2016); Hutton and
Henderson (2018); Chen et al. (2019); Brito et al. (2020); Morin et al. (2012); Bahaidarah et al. (2022);
Gomes et al. (2022); Peng (2011); Gentleman and Lang (2007); Botvinik-Nezer and Wager (2023);
Wagner et al. (2024)
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Table 5 Continued

ID RpD Causes Effects (Interest)

2.5 Lack of comprehensive testing (unit, integration, and
regression tests)

Low maintainability

Pimentel et al. (2019); Ram et al. (2019); Lee et al. (2021)

3.0 Documentation-Centric
3.1 Inadequate or outdated data documentation Missing data preprocessing and analysis details,

Missing details about parameters used for gener-
ation of simulation data, Loss of data provenance
information

González-Barahona and Robles (2012); Garcia-Silva et al. (2019); Denaxas et al. (2017); Piccolo and
Frampton (2016); Davis-Turak et al. (2017); Zhao et al. (2018); Waltemath and Wolkenhauer (2016);
Dylan Chapp (2020); Marwick (2017); Vilhuber (2020); Leipzig et al. (2021); Bánáti et al. (2016);
Mecum et al. (2018); Ghoshal et al. (2021); Raghupathi et al. (2022); Cito and Gall (2016); Irving
(2016); Lee et al. (2021); Santana-Perez and Pérez-Hernández (2015); Popp and Biskup (2022); Goecks
et al. (2010); Ziemann et al. (2023)

3.2 Inadequately documented dependencies, versions
and workflows

Lack of understanding about used software and
versions

González-Barahona and Robles (2012); Essawy et al. (2020); Kanwal et al. (2017); Waltemath and
Wolkenhauer (2016); Balz and Rocca (2020); Ghoshal et al. (2021); Pörtner et al. (2018); Cruz et al.
(2018); Hutton and Henderson (2018); Cito and Gall (2016); Föll et al. (2019); Meng et al. (2015);
Gorgolewski et al. (2017); Rougier et al. (2017); Jimenez et al. (2017b); Gomes et al. (2022); Peng
(2011); Robles (2010); Chan and Schoch (2023); Ziemann et al. (2023)

3.3 Missing/outdated/unstructured documentation and
code comments for large growing projects

Limited utility of information in the document,
Reduced code understand-ability

Essawy et al. (2017); Orozco et al. (2020); Kedron et al. (2021); Feinberg et al. (2020); Perkel (2020);
Ram et al. (2019); Piccolo and Frampton (2016); Crick et al. (2017); Knoll and Heedt (2020); Fehr
et al. (2016); Wagner et al. (2024); Zhu et al. (2023)

3.4 Manual ad-hoc methods of preparing and sharing
documentation

Affects verify-ability, re-usability and maintain-
ability of software

Denaxas et al. (2017); Orzechowski et al. (2020); Baiocchi (2007); Castleberry et al. (2012); Mauerer
and Scherzinger (2021); Balz and Rocca (2020); Kalenkovich and Levchenko (2021); Smith et al. (2016);
Widder et al. (2019)

3.5 Restricted length and format of research articles Incomplete and selective description of methods
and computational steps, black box science

Rollins et al. (2014); Niso et al. (2022); Skaggs et al. (2015); Goble et al. (2013); Edmunds et al. (2017);
Baiocchi (2007); Buckheit and Donoho (1995); Mcdougal et al. (2016); Marwick (2017); Krafczyk et al.
(2021); Fidler et al. (2017); Schwab et al. (2000)

3.6 Disconnect between scholarly publications and their
underlying data, models, code and methodology
used to produce the findings

Impairs a researchers’ ability to build upon results

Brinckman et al. (2019); Hinsen (2011); Wattanakriengkrai et al. (2022); Howison and Bullard (2016);
Skaggs et al. (2015); Baiocchi (2007); Erdemir et al. (2016); Vitek and Kalibera (2011); Cito and Gall
(2016); Irving (2016); Boettiger (2015); Nüst and Eglen (2021); Fidler et al. (2017); Stodden et al.
(2016); Crook et al. (2013); Gentleman and Lang (2007); Raff and Farris (2023)

build failure. Moreover, the lack of standardised and trusted
infrastructure for permanent storage and sharing scientific
workflows is another contributing factor towards RpD. It
results in the lack of access to the scientific software package
over time with a consequential effect of uncertainty in the
long-term re-execution of shared workflows. Researchers in
various scientific disciplines prefer to use trivial or old soft-
ware tools for computational purposes, thus incorporating
RpD, which manifests as compatibility issues with the latest
software or tools.

Version-Centric: The causes mentioned under this cate-
gory are particular to the issues arising from version changes

impacting reproducibility. For example, the version upgra-
dation in programming languages, supporting libraries, un-
derlying operating systems, and other dependencies may
cause RpD to manifest as limited usability, portability and
backward compatibility of the developed software.

Human-Centric: TD in scientific software, much like
traditional software, is accrued by the individuals partici-
pating in the development process. In this context, the de-
velopment process refers to the series of activities, decisions,
and tasks undertaken by a team of developers, scientists, and
researchers involved in creating and maintaining scientific
software. Hence, the last block of Table 5 presents the causes
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Table 5 Continued

ID Causes (RpD) Effects (Interest)

4.0 Tools and Infrastructure
4.1 Missing dependencies for complex software systems Inability to re-execute the program, Inconsistent

results
Rollins et al. (2014); Essawy et al. (2020, 2017); Garcia-Silva et al. (2019); Choi et al. (2021); Chue Hong
(2018); Pimentel et al. (2019); Knoll and Heedt (2020); Bánáti et al. (2016); Apostal et al. (2018);
Kanwal et al. (2017); Bánáti et al. (2015); Dalle (2012); Balz and Rocca (2020); Wang et al. (2020b);
Pörtner et al. (2018); Nguyen et al. (2019); Canon (2020); Hosny et al. (2016); Gorgolewski et al.
(2017); Marwick (2017); Hale et al. (2017); Parashar (2020); Crick et al. (2017); Vaillancourt et al.
(2020); Benthall and Seth (2020); Rougier et al. (2017); Blomer et al. (2015); Jimenez et al. (2017b);
Akhlaghi et al. (2021); Clyburne-Sherin et al. (2019); Howe (2012); Piccolo and Frampton (2016);
Davis-Turak et al. (2017); Chan and Schoch (2023); Ziemann et al. (2023)

4.2 Inconsistent software/hardware settings in different
computing environments

Unexpected behaviour or even failure to build

Ivie and Thain (2019); Choi et al. (2021); Apostal et al. (2018); Cook et al. (2012); Mcdougal et al.
(2016); Wang et al. (2020b); Pörtner et al. (2018); Canon (2020); Tatman et al. (2018); Hosny et al.
(2016); Meng et al. (2015); Gorgolewski et al. (2017); Marwick (2017); Hale et al. (2017); Brito et al.
(2020); Vaillancourt et al. (2020); Jimenez et al. (2017b); Kellogg et al. (2019); Mauerer and Scherzinger
(2022); Canon and Younge (2019); Maghami et al. (2023)

4.3 Lack of integrated and trusted infrastructure for per-
manent storage, sharing and execution of scientific
workflows

Lack of access to a software package, uncertain
long-term re-execution of workflows

Rollins et al. (2014); Gil et al. (2016); Edmunds et al. (2017); Waltemath and Wolkenhauer (2016);
Hidayetoğlu et al. (2022); Jimenez et al. (2017a); Ghoshal et al. (2021); Hutton and Henderson (2018);
Ram et al. (2019); Bast (2019); Widder et al. (2019); von Hahn and Mechefske (2022); Leek and Jager
(2017); Benthall and Seth (2020); Akhlaghi et al. (2021); Santana-Perez and Pérez-Hernández (2015);
Peng (2011); González-Barahona and Robles (2012); Goble et al. (2013); Denaxas et al. (2017); Taylor
et al. (2016); Di Meglio et al. (2012); Robles (2010); Mcdougal et al. (2016); Cushing et al. (2018);
da Silva and Guareis de Farias (2019); Blomer et al. (2015); Nüst et al. (2017)

4.4 Outdated or non-trivial software tools/infrastructure
usage

Incompatibility with modern tools

Essawy et al. (2020); Mcdougal et al. (2016); Peer et al. (2021); Santana-Perez and Pérez-Hernández
(2015); Ivie and Thain (2019)

4.5 Custom Scripts and Tools Tightly coupled systems
Kanwal et al. (2017); Canon (2020); Jimenez et al. (2017b)

4.6 High resource requirement for replication (HPCs or
GPUs)

Lengthy download and runtime

Krafczyk et al. (2019); Erdemir et al. (2016); Taylor et al. (2016); Cook et al. (2012); Jansen et al.
(2019); Balz and Rocca (2020); LeVeque (2009); Marrone et al. (2019); Ghoshal et al. (2021); Widder
et al. (2019); Hey and Payne (2015); Maghami et al. (2023)

4.7 Hidden states and out-of-order executions in note-
books

Inconsistencies between the reproduced and the
originally recorded results

Wang et al. (2020a,b); Akhlaghi et al. (2021); Casseau et al. (2021)
4.8 Non-deterministic order of execution in parallel sys-

tems
Accumulation of rounding errors

Waltemath and Wolkenhauer (2016); Taufer et al. (2010); Jalal Apostal et al. (2020); Jean-Paul et al.
(2019); Revol and Théveny (2014); Langlois et al. (2015); Marrone et al. (2019); Canon (2020);
Dylan Chapp (2020); Parashar (2020); Rougier et al. (2017); Jézéquel et al. (2015); Boettiger (2015);
Ziemann et al. (2023)

relevant to the people involved in the scientific software de-
velopment process. Scientific software often requires a large
volume of data from diverse contexts to produce results;
however, the lack of sufficient knowledge and training in data
management skills leads to RpD, manifested in low-quality
research artefacts. Moreover, a lack of training towards using
state-of-the-art SE tools and technologies also restricts them

from tracking changes in code and software configurations
over time. It may also result in reduced collaboration among
large interdisciplinary teams and insufficient planning, de-
sign and documentation.
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Table 5 Continued

ID Causes (RpD) Effects (Interest)

5.0 Version-Centric
5.1 Version upgradation in programming languages, li-

braries, operating systems, and other dependencies
Limited usability, portability and backward com-
patibility

Krafczyk et al. (2019); Denaxas et al. (2017); Chue Hong (2018); Piccolo and Frampton (2016);
Mukherjee et al. (2021); Bentley et al. (2019); Pimentel et al. (2019); Wang et al. (2020a); Fernandez-
Prades et al. (2018); Jean-Paul et al. (2019); Hidayetoğlu et al. (2022); Cook et al. (2012); Dalle (2012);
Mcdougal et al. (2016); Bast (2019); Hosny et al. (2016); Lee et al. (2021); Gorgolewski et al. (2017);
Perkel (2020); Parashar (2020); Bjorn et al. (2019); Crook et al. (2013); Clyburne-Sherin et al. (2019);
Ivie and Thain (2019); Baiocchi (2007); Peer et al. (2021)

5.2 Issues with version relaxation Non-deterministic build process
Goswami et al. (2020)

6.0 Human-Centric
6.1 Lack of knowledge and training in data management Low quality research artefacts

Baiocchi (2007); Davis-Turak et al. (2017); Feger et al. (2020); Mauerer and Scherzinger (2022); Pröell
et al. (2015); Wilson et al. (2017); Fiore et al. (2018); Tierney and Ram (2021); Leek and Jager (2017);
Lowndes et al. (2017); Gomes et al. (2022)

6.2 Lack of training or inadequate application of soft-
ware engineering practices and tools (version control
and containerisation technologies)

Inability to track changes in code and software
configurations over time, Reduced collaboration
among large interdisciplinary teams, insufficient
planning, design and documentation

Brinckman et al. (2019); Wattanakriengkrai et al. (2022); Spencer Smith et al. (2016); Orozco et al.
(2020); Wilson et al. (2014); von Hahn and Mechefske (2022); Hey and Payne (2015); Lowndes et al.
(2017); Crick et al. (2017); Beaulieu-Jones and Greene (2017); Benthall and Seth (2020); Jimenez
et al. (2017b); Kellogg et al. (2019); Crouch et al. (2013); Raghupathi et al. (2022); Bell et al. (2017);
Widder et al. (2019); Kanwal et al. (2017); Ram et al. (2019); Smith et al. (2016); Chirigati et al.
(2013); Clyburne-Sherin et al. (2019); Goecks et al. (2010); Zhu et al. (2023); Chan and Schoch (2023)

6.3 Lack of recognition, reward and incentives for
reproducibility-oriented practices (data and code
sharing, exhaustive testing and documentation)

Reduced priority of reproducibility practices, Pro-
longed research cycles, Culture of non-sharing

Raff and Farris (2023); Jiménez et al. (2017); Garcia-Silva et al. (2019); Niso et al. (2022); Shamir
et al. (2013); Goble et al. (2013); Eckersley et al. (2003); Chue Hong (2018); Bontemps and Orozco
(2021); Feger et al. (2020); Frery et al. (2020); Marek et al. (2018); Waltemath and Wolkenhauer
(2016); Di Meglio et al. (2012); Dalle (2012); Isdahl and Gundersen (2019); Wilson et al. (2017);
Robles (2010); Balz and Rocca (2020); Rozier and Rozier (2014); Cruz et al. (2018); Kalenkovich and
Levchenko (2021); Ram et al. (2019); Bast (2019); Boettiger (2015); Widder et al. (2019); Milham and
Klein (2019); Stodden and Miguez (2014); Tierney and Ram (2021); White et al. (2019); von Hahn and
Mechefske (2022); Leek and Jager (2017); Fidler et al. (2017); Gille et al.; Hey and Payne (2015); Ibanez
et al. (2018); Vilhuber (2020); Stodden et al. (2013); Morin et al. (2012); Kellogg et al. (2019); Gomes
et al. (2022); Laine et al. (2007); Bell et al. (2017); Harrell et al. (2022); Gil et al. (2016); Orozco et al.
(2020); Bell et al. (2017); Harrell et al. (2022); Skaggs et al. (2015); Pernet and Poline (2015); Kedron
et al. (2021); Mauerer and Scherzinger (2022); LeVeque (2009); Peng (2011); Gil et al. (2015); Nüst
et al. (2017); Chan and Schoch (2023)

6.4 Lack of formal training and precise guidelines by
institutions and journals on reproducibility-oriented
practices(data and code sharing, exhaustive testing
and documentation)

Lack of confidence in developed software for
sharing and scrutiny, Possible adoption of ad-hoc
software development practices

Raff and Farris (2023); Botvinik-Nezer and Wager (2023); Jiménez et al. (2017); Scheliga et al. (2019);
Levet et al. (2021); Wattanakriengkrai et al. (2022); Pernet and Poline (2015); Denaxas et al. (2017);
Eckersley et al. (2003); Bontemps and Orozco (2021); Kedron et al. (2021); Bajpai et al. (2017);
Feger et al. (2020); Kalenkovich and Levchenko (2021); Ram et al. (2019); Bast (2019); Irving (2016);
Boettiger (2015); Lee et al. (2021); Widder et al. (2019); Milham and Klein (2019); Mccormick et al.
(2014); Kim et al. (2018); Leek and Jager (2017); Hey and Payne (2015); Morin et al. (2012); Benthall
and Seth (2020); Kellogg et al. (2019); Akhlaghi et al. (2021); Crouch et al. (2013); Gomes et al. (2022);
Choi et al. (2023)

6.5 Fragmented Collaboration in large-sized projects
between domain researchers and developers

Inconsistent standards and practices, divided re-
search community

Orozco et al. (2020); Kedron et al. (2021); Di Meglio et al. (2012); Wu et al. (2011); Widder et al.
(2019)
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Table 5 Continued

ID Causes (RpD) Effects (Interest)

6.6 Resources (human, time, funding) constraints and
publication pressure

Incomplete documentation, Insufficient valida-
tion, Degraded research quality, Reduced collab-
orations

Raghupathi et al. (2022); Huppmann et al. (2019); Anzt et al. (2019); Chue Hong (2018); Bajpai
et al. (2017); Dalle (2012); Rozier and Rozier (2014); Widder et al. (2019); Leek and Jager (2017);
Robinson et al. (2021); Bontemps and Orozco (2021); Waltemath and Wolkenhauer (2016); Balz and
Rocca (2020); Cruz et al. (2018); Ram et al. (2019); Milham and Klein (2019); Hey and Payne (2015);
Botvinik-Nezer and Wager (2023)

6.7 Resistance to adopt reproducibility-oriented tools
and practices by experienced researchers

Culture of irreproducible research

Rollins et al. (2014); Gil et al. (2016); Frery et al. (2020)
6.8 Lack of realisation of reproducible research’s impor-

tance
Insufficient efforts to produce reproducible re-
search

Goble et al. (2013); Edmunds et al. (2017); Bell et al. (2017); Goswami et al. (2020); Lee et al. (2021);
Stodden and Miguez (2014); Stodden et al. (2013); Kellogg et al. (2019); Crouch et al. (2013); Peng
(2011)

7.0 Legal Issues
7.1 Intellectual property and ownership issues in Open

Research Software and data
Limited re-usability of research artefacts, Com-
plications in the public distribution of code and
data over copyright concerns

Ivie and Thain (2019); Morrison (2018); Bontemps and Orozco (2021); Feger et al. (2020); Balz and
Rocca (2020); Rozier and Rozier (2014); Engel et al. (2017); Hutton and Henderson (2018); White
et al. (2019); Ibanez et al. (2018); Gomes et al. (2022); Peng et al. (2006); Laine et al. (2007); Skaggs
et al. (2015); Eckersley et al. (2003); Frery et al. (2020); Mcdougal et al. (2016); Koehler Leman et al.
(2020); Stodden (2009)

7.2 Fear of legal consequences over sharing of sensitive
data involving human subjects

Limited data sharing and its reuse, Requiring
additional effort on data anonymisation, Reduced
understand-ability of data

Ivie and Thain (2019); Mendez et al. (2020); Bontemps and Orozco (2021); Kedron et al. (2021); Feger
et al. (2020); Pröell et al. (2015); Wilson et al. (2017); Rozier and Rozier (2014); Engel et al. (2017);
Dorodchi et al. (2019); Gomes et al. (2022); Morrison (2018); Eckersley et al. (2003); Hutton and
Henderson (2018)

7.3 Proprietary software usage Costly licence reproducibility
Kanwal et al. (2017); Balz and Rocca (2020); LeVeque (2009); Alarid-Escudero et al. (2019); Mauerer
et al. (2023); Föll et al. (2019)

Another factor contributing towards RpD is the lack
of recognition, reward and incentives for reproducibility-
oriented practices (data and code sharing, exhaustive test-
ing and documentation), which require researchers’ time
and effort, thus creating a culture of non-sharing, reduced
priority of reproducibility practices and prolonged research
cycles. Although reproducibility is encouraged by many
institutions, journals and conferences, precise step-by-step
guidelines to ensure reproducibility at every stage of scien-
tific software development are still missing, leading to the
adoption of ad-hoc practices.

Legal Issues: Intellectual property and ownership issues
contributing towards RpD are multifaceted. The complex
landscape of intellectual property law introduces uncertain-
ties and challenges related to ownership rights of research
artefacts. Open research often involves the use of various
licensing agreements to govern the usage and distribution
of software and data. Ambiguities or lack of clarity in these
licenses can create confusion, hindering researchers’ ability
to confidently share their work while maintaining control

over its use. Moreover, fear of legal consequences over
sharing sensitive data involving human subjects, and lack of
standardisation for determining and documenting ownership
of research artefacts adds to the complexity. Additionally, the
evolving nature of intellectual property laws and insufficient
guidance collectively contribute to RpD.

4.4. RQ4:What solutions are presented in the
existing literature to tackle reproducibility
problems in scientific software?

Various scientists, during their course of action to re-
solve reproducibility issues, have proposed many solutions
to manage them. In this regard, several guidelines and prac-
tices were proposed, specialised tools and frameworks were
developed, or existing software engineering tools and tech-
nologies were suggested to ensure reproducibility. We, there-
fore, categorised them under three main headings for better
understanding and systematic adoption.
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4.4.1. Prevention Strategies
The guidelines or best practices to deal with repro-

ducibility issues are coded as prevention strategies to man-
age RpD. To formulate them, we accumulated the existing
guidelines and practices from the selected primary studies,
induced the best out of them and combined them semanti-
cally, keeping in view the identified RpD items.

In total, 29 prevention strategies are crafted, shown
in Table 6. The careful adoption of them in combination
with each other can help researchers and scientific software
developers in the management of RpD. For instance, a
complete description of research methods, including data
collection, processing, and analysis, can prevent RpD if
documented from the start of the project and accurately
linked to the fragments of code implementing the method.
Similarly, data and code sharing in open trusted repositories
(GitHub, Gitlab, Zenodo, Figshare) are supported by a large
number of primary studies, as access to code and data
enables reproducibility; however, useful sharing requires
training to develop well-organised and documented code
using version control systems. Moreover, the allocation of
resources (human, time and funding) is required to support
the sharing of code and data that is well-written, documented
and developed using version control.

4.4.2. Existing Tools and Technologies
The existing SE tools, such as version control systems,

containers and literate programming notebooks, can prevent
RpD in scientific software projects.

Version Control is an established SE tool to track
changes in any set of files, including source code, doc-
umentation and other scripts. Using version control in
scientific software development can prevent RpD, allowing
developers to keep track of all the changes made in scientific
software code, data and supporting documentation. More-
over, Distributed Version Control Systems (DVCSs) allow
researchers to collaborate and build upon each others’ work.
DVCSs also support code protection against unexpected
deletion, overwrite or power failure; however, they are not
permanent archiving solutions. We, therefore, recommend
the use of DVCSs only during the scientific software de-
velopment process and use open, trusted repositories such
as Figshare and Zenodo for their long-term archiving and
citation (See S1, S2, S9, S11, S16 in Table 6).

Containers 44 primary studies have suggested the use
of virtualisation and containerisation technologies to ensure
reproducibility (S8 in Table 6). Containers can be considered
lightweight virtual machines that package a complete com-
putational environment, including all required code, data,
dependencies and configuration in a single image. Container
images can be distributed publicly as a single executable
file with an open-source licence. Moreover, documentation
generated along with the image contains all necessary infor-
mation about packaged software.

Careful engineering of containers makes them suitable
for reproduction, allowing people with limited knowledge
about a complex application to reproduce the software.

Moreover, combining container technologies with continu-
ous integration systems allows further validation and build-
ing upon existing software (Fernandez-Prades et al., 2018;
Beaulieu-Jones and Greene, 2017). Different container and
VM technologies are there; however the most suitable for re-
producibility, as discussed in existing literature are Docker,
Singularity (now Apptainer), Sciunit, Kubernetes, Mesos,
VirtualBox and VMware. Moreover, integrating containers
with cloud-based HPC infrastructure provides flexibility to
develop and deploy scientific software in a portable and
reproducible way (Vaillancourt et al., 2020).

Literate Programming Notebooks The use of literate
programming notebooks to prevent RpD is supported by 16
primary studies. Literate programming notebooks combine
chunks of code with human-readable text to create an exe-
cutable document (Knuth, 1984). We recommend the use of
notebooks (Jupyter, Markdown, Knitr) for small to medium-
size analysis (S17 in Table 6), because as the project size
increases the inherent problems of notebooks as highlighted
by Pimentel et al. (2019) may accumulate over time resulting
in growing debt.

4.4.3. Specialised Tools and Infrastructure
Version control, container, literate programming note-

books, documentation, and persistent sharing of code and
data are pillars of scientific software reproducibility (Zie-
mann et al., 2023; Wang et al., 2020a; Clyburne-Sherin
et al., 2019). Therefore, various scientists and research or-
ganisations have developed specialised tools, technologies
and frameworks by using these existing SE tools to allow
their easy integration with scientific software development
processes to prevent RpD.

During the analysis, we identified 39 specialised plat-
forms developed to proactively prevent RpD in scientific
software.

Executable Electronic Document: The use of elec-
tronic documents for reproducible research was initially
demonstrated by Claerbout and Karrenbach (1992). The
idea was extended and refined with more sophisticated ap-
proaches. One approach is Research Objects (ROs) “seman-
tically rich information units that aggregate and structure
scientific assets such as research data, the computational re-
sources and software processing the data in an experimental
or observational context, and the scientific publications that
communicate the subsequent findings to the wider scien-
tific community”. Transparency in ROs may prevent RpD
(McPhillips et al., 2019). Experiment Digital Object (EDO)
is a record published in an open repository as a collection of
data and executable files used to reproduce computational
experiments. ReDoc is based on the idea of an electronic
document (Claerbout and Karrenbach, 1992), which allows
readers to reproduce computational research using authors
underlying data and program. Research Compendium is
a “ unit of scholarly communication which includes the
research paper, the code, and the data” (Gentleman and
Lang, 2007; Hinsen, 2011), which was further extended
as Executable Research Compendium “a new standardise
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Table 6
Prevention Strategies (Principal) to Manage RpD

ID Prevention Strategies

S1 Use open trusted repositories for storing and publishing data as a package (data, metadata, provenance,
documentation of processing-analysis steps and relevant scripts)
Niso et al. (2022); Choi et al. (2021); Popp and Biskup (2022); Gil et al. (2016); Skaggs et al. (2015); Pernet
and Poline (2015); Denaxas et al. (2017); Brunsdon and Comber (2020); Feinberg et al. (2020); Feger et al.
(2020); Bugbee et al. (2020); Peng et al. (2006); Bánáti et al. (2015); Stodden et al. (2016); Stevens (2017);
Mecum et al. (2018); Robles (2010); Stodden (2010); Fiore et al. (2018); Tatman et al. (2018); Peer et al.
(2021); Rokem et al. (2017); Milham and Klein (2019); Stodden and Miguez (2014); Dylan Chapp (2020);
Tierney and Ram (2021); Marwick (2017); White et al. (2019); Kim et al. (2018); Chen et al. (2019); Yu
et al. (2016); Peng (2011); Ibanez et al. (2018); Barba (2019); Brito et al. (2020); Morin et al. (2012); Leipzig
et al. (2021); Gentleman and Lang (2007); Gomes et al. (2022); Stodden et al. (2016); Lupelli et al. (2015);
Botvinik-Nezer and Wager (2023); Maghami et al. (2023); Ziemann et al. (2023)

S2 Select repository that guarantees long-term storage provides versioning support and assigns DOIs with citation
templates
Garrett-Ruffin et al. (2021); Gil et al. (2016); Lefebvre and Spruit (2023); Eckersley et al. (2003); Huppmann
et al. (2019); Isdahl and Gundersen (2019); Ram (2013); Rokem et al. (2017); Stodden and Miguez (2014);
Tierney and Ram (2021); Marwick (2017); Leek and Jager (2017); Yu et al. (2016); Blinov et al. (2021); Barba
(2019); Stodden et al. (2016); Peng (2011); Stodden (2010); Pernet and Poline (2015)

S3 Research sponsors and organisations should allocate sufficient funds to enable the long-term storage, archiving,
and access of datasets
Brinckman et al. (2019); Rollins et al. (2014); Balz and Rocca (2020); Cruz et al. (2018); Hutton and Henderson
(2018); Milham and Klein (2019); Ibanez et al. (2018); Stodden et al. (2013)

S4 Data and metadata format standardisation and harmonisation
Niso et al. (2022); Huber et al. (2021); Garrett-Ruffin et al. (2021); Gil et al. (2016); Zhao et al. (2018); Jenkins
et al. (2016); Waltemath and Wolkenhauer (2016); Poldrack et al. (2019); Kalenkovich and Levchenko (2021);
Mecum et al. (2018); Kim et al. (2018); Lowndes et al. (2017); Blinov et al. (2021); Barba (2019); Crick et al.
(2017); Leipzig et al. (2021); Robles (2010)

S5 Provide Controlled access to sensitive data or grant data access to a designated third party to conduct certified
reproductions
Eckersley et al. (2003); Bontemps and Orozco (2021); Kedron et al. (2021); Lifschitz et al. (2011); Brito et al.
(2020); Vilhuber (2020); Peng et al. (2006); Laine et al. (2007)

S6 Promote research data management education, support and attribution
Feger et al. (2020); Waltemath and Wolkenhauer (2016); Wilson et al. (2017); Cruz et al. (2018); Leek and
Jager (2017); Gomes et al. (2022); Cruz et al. (2018)

S7 Bringing computation to the data when dealing with big data
Howe (2012)

S8 Use of Virtual Machine or Container technologies to encapsulate code and complete computational environment
*Combine it with Continuous Integration (CI)
Krafczyk et al. (2019); Essawy et al. (2020); Choi et al. (2021); Howison and Bullard (2016); Edmunds
et al. (2017); Orzechowski et al. (2020); Canon and Younge (2019); Mauerer et al. (2023); Apostal et al.
(2018); Fernandez-Prades et al. (2018); Waltemath and Wolkenhauer (2016); Mauerer and Scherzinger (2021);
Di Meglio et al. (2012); Dalle (2012); Jansen et al. (2019); Balz and Rocca (2020); Nguyen et al. (2019); Canon
(2020); Cruz et al. (2018); Cito and Gall (2016); Kalenkovich and Levchenko (2021); Tatman et al. (2018);
Boettiger (2015); Stodden and Miguez (2014); Marwick (2017); Hale et al. (2017); Kim et al. (2018); Krafczyk
et al. (2021); Bjorn et al. (2019); Brito et al. (2020); Beaulieu-Jones and Greene (2017); Vaillancourt et al.
(2020); Benthall and Seth (2020); Kellogg et al. (2019); Howe (2012); Hinsen (2011); Bilke et al. (2019); Ivie
and Thain (2019); Denaxas et al. (2017); Maghami et al. (2023); Choi et al. (2023); Ziemann et al. (2023);
Piccolo and Frampton (2016); Bast (2019)

S9 Share clean, readable, well-organised, and documented code developed using version control system
Niso et al. (2022); Spencer Smith et al. (2016); Orozco et al. (2020); Bilke et al. (2019); Fernandez-Prades
et al. (2018); Mccormick et al. (2014); LeVeque (2009); Rozier and Rozier (2014); Peer et al. (2021); Wilson
et al. (2014); Perkel (2020); Kim et al. (2018); Jiménez et al. (2017); Ram (2013); Gille et al.; McFee et al.
(2018); Ibanez et al. (2018); Crick et al. (2017); Botvinik-Nezer and Wager (2023); Wagner et al. (2024);
Ivimey-Cook et al. (2023); Ziemann et al. (2023)

S10 Provide training such as software carpentry to produce better quality code
Denaxas et al. (2017); Gille et al.; Orchard and Rice (2014); Ram et al. (2019); Crick et al. (2017)
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Table 6 Continued

ID Prevention Strategies

S11 Use of code hosting services with integrated version control to publish code, associated workflows and link it to
publication
Bilke et al. (2019); Denaxas et al. (2017); Dalle (2012); Skaggs et al. (2015); Isdahl and Gundersen (2019);
Mcdougal et al. (2016); LeVeque (2009); Rozier and Rozier (2014); Tatman et al. (2018); Rokem et al. (2017);
Fehr et al. (2016); Marwick (2017); Kim et al. (2018); Jiménez et al. (2017); Mccormick et al. (2014); Krafczyk
et al. (2021); Barba (2019); Crick et al. (2017); Morin et al. (2012); Kellogg et al. (2019); Gomes et al. (2022);
Stodden et al. (2016); Crook et al. (2013); Peng (2011); Stodden (2010); Laine et al. (2007); Goble et al.
(2013); Ihle et al. (2017); McFee et al. (2018); Frery et al. (2020); Piccolo and Frampton (2016); Kanwal et al.
(2017); Lowndes et al. (2017); Waltemath and Wolkenhauer (2016); Mauerer and Scherzinger (2022); Millman
and Pérez (2018); Orozco et al. (2020); Ziemann et al. (2023); Lee et al. (2021); Widder et al. (2019); Stodden
and Miguez (2014); Wilson et al. (2014); Koehler Leman et al. (2020); Marwick (2017); Levet et al. (2021);
Ibanez et al. (2018); Beaulieu-Jones and Greene (2017)

S12 Comprehensive testing (unit and integration) incorporating rigorous code reviews, automated testing, and
continuous integration practices
Robinson et al. (2021); Gil et al. (2016); Bilke et al. (2019); Pimentel et al. (2019); Fernandez-Prades et al.
(2018); Cruz et al. (2018); Bast (2019); Alarid-Escudero et al. (2019); Tatman et al. (2018); Peer et al. (2021);
Rokem et al. (2017); Fehr et al. (2016); Wilson et al. (2014); Koehler Leman et al. (2020); Perkel (2020);
Scheliga et al. (2019); Millman and Pérez (2018); Kim et al. (2018); McFee et al. (2018); Lowndes et al.
(2017); Ibanez et al. (2018); Beaulieu-Jones and Greene (2017); Mccormick et al. (2014); Nüst and Eglen
(2021); Gomes et al. (2022); Bahaidarah et al. (2022); Ivimey-Cook et al. (2023)

S13 Use of DSA (Discrete Stochastic Arithmetic) to estimate rounding error propagation in simulation programs
Jézéquel et al. (2015)

S14 Thoroughly document research methods, including data collection, processing and analysis from the start of a
project and link them to the fragments of the code implementing the method
Brinckman et al. (2019); Raghupathi et al. (2022); Stevens (2017); Hinsen (2011); Essawy et al. (2020); Orozco
et al. (2020); Piccolo and Frampton (2016); Kedron et al. (2021); Waltemath and Wolkenhauer (2016); Vitek
and Kalibera (2011); Irving (2016); Smith et al. (2016); Koehler Leman et al. (2020); Dylan Chapp (2020);
Scheliga et al. (2019); Krafczyk et al. (2021); Chen et al. (2019); Yu et al. (2016); Ihle et al. (2017); Gomes
et al. (2022); Botvinik-Nezer and Wager (2023); Zhu et al. (2023); Ivimey-Cook et al. (2023); Ziemann et al.
(2023); Hutton and Henderson (2018); Raff and Farris (2023)

S15 Document computational environment as Read me— should indicate the operating system(s), software
dependencies(packages, libraries, versions) and hardware used
Piccolo and Frampton (2016); Chen et al. (2019); Tatman et al. (2018); Brito et al. (2020); Lee et al. (2021);
Fehr et al. (2016); Dylan Chapp (2020); Tierney and Ram (2021); Santana-Perez and Pérez-Hernández (2015);
Kim et al. (2018); Popp and Biskup (2022); Mendez et al. (2020); Zhu et al. (2023); Ivimey-Cook et al. (2023);
Ziemann et al. (2023); Bast (2019)

S16 Store documentation in open trusted repositories with version control and provide separate link for documenta-
tion in publication
McFee et al. (2018); Ibanez et al. (2018); Essawy et al. (2020); Wattanakriengkrai et al. (2022); Orozco et al.
(2020); Piccolo and Frampton (2016); Knoll and Heedt (2020); Taylor et al. (2016); Bánáti et al. (2015);
Stodden et al. (2016); Rokem et al. (2017); Dylan Chapp (2020); Ram (2013); Chen et al. (2019)

S17 Use of Literate programming notebooks for documenting medium-sized analysis
Piccolo and Frampton (2016); Pimentel et al. (2019); Casseau et al. (2021); Fiore et al. (2018); Peng et al.
(2006); Leek and Jager (2017); Kalenkovich and Levchenko (2021); Pernet and Poline (2015); Baiocchi (2007);
Blinov et al. (2021); Isdahl and Gundersen (2019); Balz and Rocca (2020); Kluyver et al. (2016); Maghami
et al. (2023); Ivimey-Cook et al. (2023); Ziemann et al. (2023)

packaging mechanism which combines data, software, text,
and a user interface description” (Nüst et al., 2017).

Prickly Pear Archive (PPA) is a portable hypermedia
for scholarly publications hosted on HPC resources. PPA
allow researchers to test simulations using the production
archive, and results can be incorporated into an executable
paper (Bentley et al., 2019).

WAVELAB facilitate reproducibility by packaging all
available code and figures with published wavelet articles
(Buckheit and Donoho, 1995).

Whole Tale The Whole Tale presents an environment
that facilitates the linkage of data and code with publications
by strengthening the three layers of scholarly publication,
i.e., scholarly process, data, and computational analysis.
The Whole Tale architecture consists of micro-services that
provide access to large amounts of data, create persistent
identifiers, a containerised platform to conduct analysis and
the ability to publish the entire methodology systematically
and conveniently. Thus enabling readers of the manuscript to
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ID Prevention Strategies

S18 Use modern programming languages and tools to generate documentation from code comments Doxygen and
Sphinx, MKDocs
Niso et al. (2022); McFee et al. (2018); Millman and Pérez (2018)

S19 A systematic and detailed approach for describing software and code reproducibility in research article
Gil et al. (2016); Vitek and Kalibera (2011); Robles (2010); Rozier and Rozier (2014); Widder et al. (2019);
Levet et al. (2021)

S20 Document complete testing environment
Spencer Smith et al. (2016); Fehr et al. (2016)

S21 Define system scope and requirements
Kanwal et al. (2017); Levet et al. (2021); Widder et al. (2019)

S22 Provide training and resources on reproducibility skills for developers and reviewers
Chue Hong (2018); Kedron et al. (2021); Mauerer et al. (2023); Waltemath and Wolkenhauer (2016); LeVeque
(2009); Cruz et al. (2018); Bast (2019); Scheliga et al. (2019); Kim et al. (2018); Parashar (2020); Gille et al.;
Brito et al. (2020); Stodden et al. (2013); Benthall and Seth (2020); Kellogg et al. (2019); Crouch et al. (2013);
Raff and Farris (2023)

S23 Create incentives and recognition systems as through citations, awards or promotions
Brinckman et al. (2019); Eckersley et al. (2003); Chue Hong (2018); Bajpai et al. (2017); Feger et al. (2020);
Marek et al. (2018); Di Meglio et al. (2012); Irving (2016); Milham and Klein (2019); Koehler Leman et al.
(2020); von Hahn and Mechefske (2022); Scheliga et al. (2019); Leek and Jager (2017); Barba (2019); Crick
et al. (2017); Stodden et al. (2013); Benthall and Seth (2020); Kellogg et al. (2019); Stodden et al. (2016);
Raff and Farris (2023); Howison and Bullard (2016)

S24 Foster a culture of transparency and sharing while preserving the benefits of authors
Garcia-Silva et al. (2019); Shamir et al. (2013); Bajpai et al. (2017); Harrell et al. (2022); Dalle (2012); Balz
and Rocca (2020); Ram et al. (2019); Bast (2019); Lee et al. (2021); Stodden and Miguez (2014); Ibanez
et al. (2018); Stodden et al. (2013); Kellogg et al. (2019); Gomes et al. (2022); Stodden (2009); Scheliga et al.
(2019)

S25 Promote effective communication and collaboration within research teams and across disciplines
Robinson et al. (2021); Huppmann et al. (2019); Anzt et al. (2019); Bilke et al. (2019); Pernet and Poline
(2015); Frery et al. (2020); Wu et al. (2011); Cruz et al. (2018); Koehler Leman et al. (2020); Hutton and
Henderson (2018); Kellogg et al. (2019)

S26 Allocate sufficient resources (time, human and funding) to support reproducibility efforts
Brinckman et al. (2019); Edmunds et al. (2017); Bontemps and Orozco (2021); Milham and Klein (2019);
Barba (2019); Stodden et al. (2013); Ihle et al. (2017); Laine et al. (2007); Botvinik-Nezer and Wager (2023)

S27 Develop and adopt community standards for reproducibility
Orozco et al. (2020); Poldrack et al. (2019); Waltemath and Wolkenhauer (2016); Mcdougal et al. (2016);
Tatman et al. (2018); Widder et al. (2019); Botvinik-Nezer and Wager (2023)

S28 Obtain and distribute appropriate open source licences (permissive or copyleft) to allow re-use of software and
data
Morrison (2018); Gil et al. (2016); Skaggs et al. (2015); Pernet and Poline (2015); Eckersley et al. (2003); Frery
et al. (2020); Mcdougal et al. (2016); Tatman et al. (2018); Rokem et al. (2017); Koehler Leman et al. (2020);
Stodden (2009); Scheliga et al. (2019); Levet et al. (2021); Jiménez et al. (2017); McFee et al. (2018); Barba
(2019); Brito et al. (2020); Gomes et al. (2022); Stodden et al. (2016); Stodden (2010); Morin et al. (2012);
Bast (2019); Tatman et al. (2018); Lee et al. (2021); Stodden and Miguez (2014); Tierney and Ram (2021);
Yu et al. (2016); Peng (2011)

S29 Use of templates programs/simulated dataset/data anonymisation for private-sensitive data
Ivie and Thain (2019); Kedron et al. (2021); Pröell et al. (2015); Rozier and Rozier (2014); Engel et al.
(2017); Dorodchi et al. (2019); Krafczyk et al. (2021); Eckersley et al. (2003); Hutton and Henderson (2018);
Ivimey-Cook et al. (2023)

view the entire method and reproduce the analysis (Brinck-
man et al., 2019).

N3phele is a cloud-based workbench accessed via a
browser that allows researchers to perform complex analysis
using only browser and cloud resources. It is a program-
ming language and platform-independent framework, thus
allowing developers to work independently and contribute
to processing content. N3phele packages the scientific code

by decoupling the desktop interface and orchestration envi-
ronment from the cloud computing and storage resources.
This reduces environmental dependencies in the analytic
software, thus preventing RpD (Cook et al., 2012).

ReproZip enables researchers to make their experiments
reproducible without making substantial efforts. Installing
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Table 7
Specialised Tools and Infrastructure to Prevent RpD

Tool or Technology Primary Study

Research Objects Garcia-Silva et al. (2019); Nüst et al. (2017); McPhillips et al. (2019);
Morrison (2018)

Experiment Digital Object Orzechowski et al. (2020)
Research Compendium Gentleman and Lang (2007); Nüst et al. (2017)
ReDoc Schwab et al. (2000)
Prickly Pear Archive Bentley et al. (2019)
WAVELAB Buckheit and Donoho (1995)
Whole Tale Brinckman et al. (2019)
N3phele Cook et al. (2012)
ReproZip Nüst et al. (2017); Pimentel et al. (2019)
ScienceCapsule Ghoshal et al. (2021)
SemanticSCo Web da Silva and Guareis de Farias (2019)
iEnviroment Alencar et al. (2018)
PRISONER Hutton and Henderson (2018)
Climate Analytics Hub Fiore et al. (2018)
PopperCI Jimenez et al. (2017a,b)
CodeOcean Clyburne-Sherin et al. (2019)
Galaxy Framework Föll et al. (2019); Leek and Jager (2017); Goecks et al. (2010); Piccolo

and Frampton (2016)
AlgoRun Hosny et al. (2016)
Invariant Framework Meng et al. (2015)
Rang Chan and Schoch (2023)
BIDS App Niso et al. (2022); Garrett-Ruffin et al. (2021); Gorgolewski et al. (2017)
RE3 Bahaidarah et al. (2022)
Reproducible Experiment Descriptions Jansen et al. (2019)
SwarmRob Pörtner et al. (2018)
SciUnit Essawy et al. (2020)
CERN Framework Blomer et al. (2015); Chen et al. (2019)
Maneage Akhlaghi et al. (2021)
Osiris Wang et al. (2020b)
PyDFix Mukherjee et al. (2021)
Automatic Control Knowledge Repository Knoll and Heedt (2020)
Computer-Aided Reproducibility Marek et al. (2018)
PyPHM von Hahn and Mechefske (2022)
Omero Processing Extension Taubert and Bücker (2017)
DataONE Data Package Mecum et al. (2018)
ASpecD Popp and Biskup (2022)
GigaDB Edmunds et al. (2017)
CoMSES Net Rollins et al. (2014)
OntoSoft Essawy et al. (2020); Gil et al. (2016); Gil et al. (2015); Essawy et al.

(2017)
Blockchain and Distributed Ledger Technologies Wittek et al. (2021); Bell et al. (2017)

the Reprozip package can automatically capture the prove-
nance of an entire experiment, including data dependen-
cies, libraries, and configuration parameters, by tracking
system calls. The captured information is combined into a
lightweight, reproducible package that can be easily shared
and reproduced in any computational environment (Nüst
et al., 2017; Pimentel et al., 2019).

ScienceCapsule is a framework that supports repro-
ducibility by automatically capturing and sharing scientific
workflows. It captures and manages both computational and
human elements of workflows. Moreover, it allows users
to keep track of different workflow versions by creating
workflow snapshots (Ghoshal et al., 2021).

SemanticSCo Web is a web-based, reproducibility-
supported version of the SemanticSCo platform used for
gene expression data analysis. The component Composition
Manager of SemanticSCo Web records all information
related to an analysis workflow in a relational database. This
includes all analysis activities, input and output data and
service execution parameters, thus allowing any developed
workflow to be reproduced in a similar order in which all
activities were designed and executed previously da Silva
and Guareis de Farias (2019).

iEnviroment is a platform that facilitates access to open
data resources and research collaboration. The integrated
services enable secure storage, publication, discovery, reuse
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and verification of scientific research data. It supports repro-
ducibility by partially capturing the process (e.g., metadata,
models, tools) that generates the research data (Alencar
et al., 2018).

PRISONER is a framework which aims to support
the execution of reproducible and privacy-respecting ex-
periments using social media network data. It encapsulates
underlying methodology details, such as data collection,
processing, and participant consent, as a workflow which can
be shared and reproduced (Hutton and Henderson, 2018).

Climate Analytics-Hub provides an open science envi-
ronment for reproducible multi-model climate change data
analytics experiments by combining big data approaches and
parallel computing paradigms. However, it requires human
intervention through the Ophidia analytics document (Fiore
et al., 2013) to describe any missing information regarding
the computational environment (Fiore et al., 2018).

PopperCI allows researchers to automate end-to-end
execution and validation of their experiments. It is based on
Popper, which is a manual DevOps approach for systemat-
ically implementing different stages of scientific workflow
(Jimenez et al., 2017a,b).

Code Ocean is a platform that facilitates researchers to
package code, data, results, metadata, and a computational
environment into a single compendium called ‘compute
capsule’ (Clyburne-Sherin et al., 2019).

Galaxy Framework is a web-based analysis platform
for complex, interconnected data-driven experiments, pro-
viding users access to large-scale computational resources. It
supports provenance tracking and version control, including
the ability to switch between software and tool versions and
to publish complete analysis, thus enabling reproducibility
(Föll et al., 2019; Leek and Jager, 2017; Goecks et al., 2010;
Piccolo and Frampton, 2016).

AlgoRun is a packaging system for implemented algo-
rithms based on a Docker container technology. The pack-
aged algorithms can be accessed and executed directly from
a web browser, thus facilitating reproducibility (Hosny et al.,
2016).

Invariant framework enables reproducibility by cap-
turing and preserving the dependencies and configurations
used by the program, including hardware, OS, and other
static, dynamic, local and networked dependencies, source
codes and data files. The resulting package is then stored and
distributed through an open-source, public repository (Meng
et al., 2015).

Rang is a reproducible research compendium based on
Docker that automatically generates declarative descriptions
of the computational environment to support reproducibility
(Chan and Schoch, 2023).

BIDS Apps The Brain Imaging Data Structure (BIDS) is
a community standard for organising, describing, and shar-
ing neuroimaging research data. BIDS apps use BIDS stan-
dard and singularity containers to ensure the reproducibility
of neuroimaging data analysis (Niso et al., 2022; Garrett-
Ruffin et al., 2021; Gorgolewski et al., 2017).

RE3 is an open-source platform that uses the ML model
(trained on a code readability survey) to assess the readabil-
ity of R code. Reproducibility is then checked by using a
Docker container that automatically bundles and executes
the software, libraries, and configuration files together (Ba-
haidarah et al., 2022).

Reproducible Experiment Descriptions (RED) are
JSON or YAML-based file formats for reproducible experi-
ment descriptions. The programs are packaged and executed
as Docker Image (Jansen et al., 2019).

SwarmRob is an orchestration solution to manage RpD
in robotics research, using container images and services
(Pörtner et al., 2018).

SciUnit is a lightweight solution for containerisation;
it automatically traces and encapsulates dependencies (Es-
sawy et al., 2020).

CERN analysis and preservation framework 15, 16

enable researchers to automatically record and preserve the
entire workflow components, i.e., data, software, computing
environment and associated documentation (Chen et al.,
2019). GROW-FS and CERN-VM-FS are file systems de-
veloped for distributing complex software stacks across hun-
dreds and thousands of machines (Blomer et al., 2015).

Maneage is designed to manage data lineage. The so-
lution is proposed with the concept of a robust data man-
agement strategy from the start of a project to deal with the
longevity issues in existing tools such as docker and Jupyter
notebooks (Akhlaghi et al., 2021).

Osiris an automated approach to make Jupyter note-
books reproducible. Osiris take the notebook as input and
reconstructs all possible execution orders that reproduce
the exact notebook results without errors. On unsuccessful
reproduction, it highlights the location of failure for under-
standing the root causes of non-reproducibility of Jupyter
notebooks (Wang et al., 2020b).

PyDFix detects, and fixes RpD caused by dependency
errors in Python builds (Mukherjee et al., 2021).

Automatic Control Knowledge Repository is more
than a simple storage repository. It combines existing SE
technologies, i.e., Distributed Version Control Systems and
Automated Tests/Continuous Integration Services to prevent
RpD (Knoll and Heedt, 2020).

Computer-Aided Reproducibility (CAR) is a tool that
facilitates researchers in sharing their research data and
results by partially automating the process of sharing. This
prevents RpD by reducing the time and effort required for
the manual data-sharing process (Marek et al., 2018).

PyPHM is a domain-specific tool designed to support
Prognostics and Health Management researchers in con-
ducting reproducible computational research (von Hahn and
Mechefske, 2022).

Omero Processing Extension (OPE) prevent RpD by
establishing a link between data processing and storage. It
automatically generates a description of workflow execution

15https://github.com/cernanalysispreservation
16https://reanahub.io/
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and annotates the results. A web-based interface allows easy
access and usage (Taubert and Bücker, 2017).

DataONE Data Package DataOne 17 is a group of in-
teroperable repositories that facilitate scientific data sharing
and discovery. It links existing cyberinfrastructure to provide
a distributed framework for long-term data preservation.
Using the DataONE data package standard may prevent RpD
by incorporating provenance information in datasets as part
of the enclosing data package. Moreover, software and code
can be included as a part of the data package using container
technology to ensure a reproducible package (Mecum et al.,
2018).

ASpecD is a modular framework written in Python
programming language. It supports the analysis of com-
plex spectroscopic data to allow reproducibility (Popp and
Biskup, 2022). Similarly, GigaDB is an integrated database
linked with the GigaScience journal. It hosts large-scale
biological data and provides analysis tools and computing
resources to support executable and reproducible publica-
tions (Edmunds et al., 2017).

CoMSES Net is a Computational Model Library where
researchers can submit their model code and documentation
for the certification process. The certified submissions are
then assigned with persistent unique identifiers for citation
(Rollins et al., 2014).

OntoSoft is a software registry that automatically cap-
tures the metadata of scientific software once linked to a code
repository such as Git (Essawy et al., 2020; Gil et al., 2016;
Gil et al., 2015; Essawy et al., 2017).

Blockchain and Distributed Ledger technologies can
be used to ensure end-to-end integrity of scientific work-
flows (Wittek et al., 2021; Bell et al., 2017).

Mathematical Approach Bánáti et al. (2016) classified
scientific workflows into four main categories based on the
reproducibility cost of workflows. They employed decay
parameters (“the type and the measure of the change of the
given value”) in scientific workflows to calculate the cost of
reproducibility of a given workflow— an essential element
of TD landscape.

5. Discussion and Implications
This SLR aimed to investigate the issues contributing

towards RpD and the solution/guidelines to mitigate those
issues, as evidenced by selected primary studies. For this,
214 primary studies were analysed to present a taxonomy
of RpD items, i.e., a list of causes contributing towards the
emergence and identification of RpD and a list of strategies,
activities, and tools to prevent RpD in scientific software.

Although various studies exist on different types of TD
Melo et al. (2022); Alves et al. (2016), reproducibility has
yet to be mentioned as a type of TD. Therefore, we organised
our emerged results with already established concepts of TD
presented by Izurieta et al. (2016); Rios et al. (2018); Avge-
riou et al. (2016) to characterise reproducibility as a type of
TD as shown in Figure 6. Here, Debt may be a technical

17https://www.dataone.org/

issue, developer challenge or sub-optimal activity having
short-term benefits. Debt items may belong to any cate-
gory, i.e., data-centric, code-centric, documentation-centric,
human-centric, or tool-centric. Interest is the extra cost that
needs to be paid because of Debt. Principal is the cost of
developing or adopting a solution to prevent or remove RpD.
Indicators are observable signs (‘reproducibility smells’)
through which RpD becomes evident in scientific software
projects. It represents the specific challenges, issues, or
outcomes that result from factors contributing to RpD. From
the obtained list of causes and effects, we hypothesised a
few reproducibility smells shown in Figure 7, which we will
validate as part of future work of this SLR in real scientific
software projects.

As we collected primary studies from various scientific
disciplines; we mapped all emerged issues under each cat-
egory to the scientific domains presented in Figure 6. The
mapping results presented in Table 8 give us an overview
of problems specific to each domain, enabling their sys-
tematic identification and prevention. From this map, we
identified some issues common to all scientific disciplines
i.e., RpD1.4: lack of an integrated and trusted infrastructure
for storing, processing and distributing a growing volume
of data; RpD2.1: complex algorithms and code which re-
sults in limited re-usability of code and inability to track
code versions and RpD4.1: missing or updated dependencies
for complex software systems. Also, RpD1.1: incomplete
and selective reporting of datasets and RpD5.1: version
upgradation in programming languages, libraries, operat-
ing systems, and other dependencies is a common issue
among nine disciplines. Moreover, all scientific domains
show an agreement on RpD-6.2, 6.3 and 6.4 related to the
lack of training, guidelines and incentives for reproducible
research, which calls for future works in terms of train-
ing initiatives, formal guidelines and incentive schemes for
reproducibility-oriented research.

From the cross-analysis of the pattern, we also observed
that Information and Computing Sciences, Biomedical and
Clinical Sciences, Economics, Mathematics and Biological
Sciences have highlighted similar issues. Moreover, seven
scientific disciplines, except Engineering and Earth Science,
highlight legal issues related to open-source software. Sim-
ilarly, all scientific disciplines highlight issues related to
the tools and infrastructure, except psychology, which has
only one occurrence in the category, i.e., RpD4.1: missing
dependencies.

The mapping given in Table 8 also shows that RpD2.5,
i.e., lack of comprehensive testing (unit, integration, and
regression tests) is only highlighted by Information and
Computing Science papers, which is an area of concern. In
our view, lack of testing is a prominent factor contributing
to RpD. However, it is not acknowledged by other scientific
disciplines. There could be two possible reasons for this;
either researchers from other domains do not know about the
importance of testing for ensuring reproducibility, or they
know about it but do not acknowledge it.
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Figure 6: Reproducibility Debt and related concepts: Debt may be a technical issue, developer challenge or sub-optimal activity
having short-term benefits. Debt items may belong to any category and have some effects. Interest is the extra cost that needs
to be paid because of debt. Principal is the cost of developing or adopting a solution that can prevent or remove RpD.

Overall, the mapping presented in Table 8 indicates that
the factors leading to RpD are distributed quite evenly across
scientific domains, with only a few exceptions that have
been discussed above. This suggests that each discipline
faces similar or closely related issues and challenges that
contribute to RpD and that a standardised solution could be
implemented to manage it proactively. Our results also show
a balance of efforts in highlighting the issues contributing
towards RpD and proposing solutions (tools and practices)
to mitigate those issues, as demonstrated by selected primary
studies. However, there is a lack of empirical evidence on
the state of adoption of those tools and suggested practices.
This lack of evidence creates a gap between industry and
academia on which tools and practices can be employed
more effectively to prevent RpD.

In addition to all the above, we established a relationship
between identified RpD items and existing TD types pre-
sented in Table 9. We concurrently analysed the RpD causes
and effects that appeared under each category (as given in
Table 5 and mapped them to the list of situations (smells)
discussed by Alves et al. (2016); Rios et al. (2018); Sculley
et al. (2015) where these existing types of debts can occur
in software systems. For example, the code-centric issues
contributing towards RpD are related to Code Debt (Un-
necessary code duplication and complexity; Bad style that
reduces the readability of code), Versioning Debt (Unneces-
sary code forks), Infrastructure Debt (Outdated components
of an application’s development environment), Build Debt
(build process needs to run ill-defined dependencies) and
Test Debt (Lack of tests e.g., unit tests, integration tests,
and acceptance tests). Documentation issues are related to
Documentation, Code and Data Debt (missing, incomplete

Figure 7: Reproducibility smells hypothesised from the list of
RpD causes and effects presented in Table 5

or outdated documentation of scientific code and data; insuf-
ficient code comments).

5.1. Implications
Although the primary goal of this SLR was to accumu-

late existing knowledge on reproducibility issues and pro-
posed solutions, the answers to the RQs have implications
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Table 8
Categories of RpD items exclusive to scientific software and their relation with existing TD types: Information and Computing (IC),
Biomedical and Clinical (BC), Biological Science (BS), Physical Science (PS), Earth Science (ES), Economics and Mathematics
(EM), Environmental Science (ES), Psychology (P), Engineering (En), Generic (Ge)

RpD Items IC BC BS PS ES EM ES P En Ge

Data-Centric
RpD1.1 X X X X X X X X X
RpD1.2 X X X X X X
RpD1.3 X X X X X X
RpD1.4 X X X X X X X X X X
RpD1.5 X X X X X X X

Code-Centric
RpD2.1 X X X X X X X X X
RpD2.2 X X X X
RpD2.3 X X X X
RpD2.4 X X X X X X X
RpD2.5 X

Documentation
RpD3.1 X X X X X X X X
RpD3.2 X X X X X X X
RpD3.3 X X X X X X X
RpD3.4 X X X X X
RpD3.5 X X X X X
RpD3.6 X X X X X X X

Infrastructure
RpD4.1 X X X X X X X X X X
RpD4.2 X X X X X X X X
RpD4.3 X X X X X X X X X
RpD4.4 X X X X X
RpD4.5 X X X X
RpD4.6 X X X X X X X
RpD4.7 X X
RpD4.8 X X X X X X X

Versioning
RpD5.1 X X X X X X X X X
RpD5.2 X

Human
RpD6.1 X X X X X X
RpD6.2 X X X X X X X X X X
RpD6.3 X X X X X X X X X
RpD6.4 X X X X X X X X X
RpD6.5 X X X X X X X X
RpD6.6 X X X X
RpD6.7 X X X
RpD6.8 X X X X X

Legal Issues
RpD7.1 X X X X X X X X
RpD7.2 X X X X X X X
RpD7.3 X X X X X

for a broad range of audiences, including researchers18, prac-
titioners19, policymakers, funding agencies, tool builders,
educators, and editors/reviewers as discussed below:

18Individuals who aim to contribute to the area of RpD.
19Individuals or professionals involved in the scientific software devel-

opment process such as domain researchers developing software for com-
puting their results or software developers working for scientific research
teams.

1. The presented taxonomy of issues (RQ1) is the or-
ganised and structured overview of all major groups of
problems attributed towards the emergence of RpD. It will
give practitioners a quick understanding of RpD and the
types of RpD items that could be present in their software.
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2. The 37 causes of RpD presented in this study would
help practitioners to identify RpD in their scientific software
projects. Additionally, the list of effects alongside each cause
would guide prioritising each debt item for prevention or
payment.

3. Out of 37 causes attributed to the emergence of the
RpD, eight causes are associated with the people involved
in developing and using scientific software, supported by
163 primary studies from all scientific domains. The lack
of recognition, reward and incentives for reproducibility-
oriented practices, i.e., data and code sharing, exhaustive
testing and documentation, is one of the prominent causes
mentioned by 56 primary studies. Based on this analysis, we
recommend that funding agencies, research organisations
and universities need to pay more attention towards reward-
ing and incentive structures for extra reproducibility efforts.

4. Among the recorded causes, missing or updated de-
pendencies for complex software systems are highlighted by
36 primary studies, which is the cause of the emergence of
inconsistent results and sometimes even the inability to re-
execute programs. Based on this analysis, we recommend
that scientific software developers should pay more attention
and effort to specify and document all required dependencies
or use container technologies to package the complete soft-
ware environment.

5. One of the RpD causes, i.e., resistance to adopting re-
producibility practices by senior researchers, will help them
to self-analyse that although they are successful without
adopting reproducibility practices as part of their research,
it results in the culture of irreproducible research, as they
train the new generation of scientist.

6. A list of 29 prevention strategies would guide practi-
tioners towards systematically adopting SE tools (e.g., con-
tainers, literate programming notebooks and version control)
and other reproducibility-oriented practices such as docu-
mentation, data sharing, and testing. Also, part of prevention
strategies guides research organisations and universities
to take necessary steps towards preventing human-centric
issues.

7. We have identified 39 specialised platforms and tech-
nologies developed to ensure the reproducibility of scientific
workflows presented in Table 7. Out of these 39 tools, six
are based on the idea of executable documentation discussed
in 10 primary studies, whereas 22 use container technology
to encapsulate a complete computational environment dis-
cussed in 30 primary studies. Others provide storage support
with integrated metadata capture and version control func-
tions. Two primary studies also discuss the use of blockchain
technologies to ensure the end-to-end reproducibility of
scientific workflows. Thus, a decent number of automated
solutions are developed that facilitate collaboration and de-
pendency management to prevent RpD; however, relying
on existing solutions is still a challenge because there is a
lack of empirical evidence on the adoption, usability and
trustworthiness of these technologies and platforms.

Moreover, all identified tools are designed to prevent
RpD proactively (Wonsil et al., 2023) i.e., they should be

used from the start of the project, which requires background
knowledge of reproducibility and comfort with using these
tools. The prioritisation of RpD needs specific strategies and
guidelines to use these tools. Hence, much effort already put
in by researchers and tool builders across domains can not
be materialised to prevent RpD until a detailed exploration
of RpD management activities.

8. The results of this SLR also have implications for
researchers who want to investigate RpD across various sci-
entific disciplines and those who want to investigate strate-
gies for its management, i.e., (a) The proposed definition of
RpD derived from the taxonomy of RpD items will allow
researchers to share a common vocabulary; (b) As a result
of this SLR, we formally acknowledge reproducibility as
a type of TD. This calls for researchers in the TD area to
explore existing TD management strategies in the context
of RpD for its effective management; (c) The list of RpD
items presented in this study is a starting point to charac-
terise RpD, which requires further exploratory studies to
investigate other technical issues, developer challenges and
state-of-the-art solutions for RpD prevention and payment;
(d) Out of 214 primary studies, only 1 study focused on the
cost of reproducibility regarding jobs/tasks, which is another
research gap; (e) In total, 56 primary studies highlighted
the concern that reproducibility is not rewarded, which ul-
timately promotes a culture of non-reproducible research.
Hence, investigating and analysing the effort and cost to
ensure reproducibility is another research area.

9. For MSR researchers interested in empirical studies
on reproducibility, the presented list of RpD items and
reproducibility smells would serve as a guide to identify and
measure RpD in existing open-source projects.

10. We identified that RpD is a type of debt which
affects every aspect of the scientific software development
process and is related to all tangible artefacts of the software
development process, i.e., data, code and documentation,
either directly or indirectly. This results in a large number
of debt items present at each stage of the development
process. The manual management of a large number of RpD
items is, therefore, complex and requires the development
of automated tools for RpD management, which is another
research area for tool builders.

11. As reproducibility is a newly acknowledged type of
TD, our findings in Table 9, which show a relationship be-
tween RpD and existing TD types, would guide researchers
in the TD area to explore already established strategies for
TD management in relation to RpD. Prior work by Alves
et al. (2016); Rios et al. (2018) demonstrates that most
research regarding TD identification is towards code-related
activities (code, design, and architecture debt), which could
be applied to RpD issues related to these types of debt.
i.e., code, dependency, build, versioning, and documentation
issues.

6. Threats to Validity
We considered several threats that affect the validity of

our results. These threats arise from the inherent challenges
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Table 9
Categories of RpD items exclusive to scientific software and their relation with existing TD types

RpD Items Code Architecture Documentation Data Versioning Infrastructure Build Test People

Data-Centric X X X
Code-Centric X X X X X
Tool-Centric X X X
Version Issues X X X
Documentation X X X
Human-Centric X

Legal Issues

and limitations of SLR methodology (Kitchenham et al.,
2010). This section highlights those threats and the mitiga-
tion strategies opted to minimise their impact on the quality
of the research process and results.

Descriptive Validity highlights the importance of accu-
rately recording all data used for concluding results (Petersen
et al., 2015). Qualitative studies are more susceptible to de-
scriptive validity threats; therefore, to address this potential
concern, we approached our study with a commitment to a
systematic process and rigorous protocols throughout both
the study selection and data extraction phases following the
guidelines by Kitchenham and Charters (2007). All authors
of the paper have validated our entire selection and data
extraction process. For data extraction, all extraction fields
were derived based on research objectives, and initially,
data was extracted from a small group of control papers.
Comprehensive discussions among all authors followed this
to ensure that the recorded data and extraction fields aligned
cohesively with our research objectives, thereby reinforcing
the credibility of our approach. After reaching an agreement
on extraction fields, the first author individually extracted
the data from all selected papers, which was reviewed and
validated by other authors.

Theoretical validity relies on our proficiency in ac-
curately capturing what we intend to capture. Therefore,
considerations such as biases and study selection play an
essential role. During the study search, one threat is missing
relevant literature. We used a systematic approach to for-
mulate and test our search string to mitigate this threat. A
group of control papers were obtained and analysed in detail
to identify the keywords used in the search string. The search
string was verified by running a pilot search with a criterion
that (at least five control papers should appear within 1-
3 pages from top search results). Secondly, to avoid pub-
lisher bias, we searched the venues recommended by prior
works in software engineering (Kitchenham and Charters,
2007) and the results were complemented by adding Google
Scholar. Finally, we complemented the search with a forward
and backward snowballing, applied to all selected studies
after a complete reading of the manuscript (Wohlin, 2014).

Researcher biases may appear during study selection and
extraction of data. To mitigate selection bias, the study selec-
tion process was carried out by two authors, during which the
first author independently selected the primary studies and
the second reviewed all selected and excluded papers. All

disagreements were discussed in weekly meetings keeping
in view the IECs and QC. To mitigate researcher bias during
data extraction and analysis, all the extracted data and
qualitative codes were carefully reviewed and discussed by
all authors of this paper.

Reproducibility To allow reproducibility, (1) a method-
ology adopted for this study is carefully reported in the
paper; (2) a raw data file is shared along with the Zotero
library and qualitative analysis files to keep the transparency
of the study selection, data extraction and analysis process;
(3) artefacts related to the quantitative analysis are shared
along with the calculated graphs and tables; (4) we used
Jupyter Notebook, as it supports reproducibility for small to
medium-size analysis; (5) we shared all research artefacts
on Figshare for their long-term storage and archival, with
attached license and citable DOI. All these steps may pre-
vent RpD in our research process, thus allowing others to
replicate, analyse and extend our results independently.

7. Conclusions and Future Works
When developers make low-quality technical choices

to obtain short-term benefits, Technical Debt (TD) may
be unwittingly incorporated, leading to an assortment of
future problems. Multiple TD types have been identified,
along with their occurrences and corresponding manage-
ment strategies. Therefore, new types of TD need to be
investigated to assist their management and control their
impact. In this context, this work characterises a new type
of TD, i.e., Reproducibility Debt (RpD).

The research focused on identifying the leading issues
attributed to the emergence and identification of RpD and a
list of solutions presented in the existing literature to mitigate
those issues. A systematic literature review was conducted
following rigorous protocols and evidence in existing liter-
ature was analysed in detail to present the results. In total,
214 primary studies highlighting reproducibility issues and
their solutions in the context of scientific software were
included after searching from renowned digital libraries. A
three-stage filtering process was conducted using predefined
protocols to select the studies published till January 2024.

The results of this systematic literature review show
diverse issues contributing towards the emergence of RpD,
involving issues related to scientific software code, data,
documentation, issues related to the tools and technologies
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used to develop scientific software, issues related to the
people involved in scientific software development process
and legal constraints. The taxonomy of issues led to the
definition of RpD as “Reproducibility debt is a type of
technical debt primarily impacting scientific software. It
refers to the accumulative issues and challenges that hin-
der the ability to reproduce scientific outcomes, stemming
from challenges inherent in scientific software code and
data, including development, organisation, dissemination,
and documentation.”

Another contribution of this systematic review is a syn-
thesised and comprehensive list of causes attributed to-
wards the emergence of RpD and their corresponding ef-
fects. Moreover, a list of prevention strategies and existing
platforms is presented, having implications for professionals
involved in the scientific software development process. A
consolidated list of implications is also presented for re-
searchers who want to investigate RpD and its management
strategies.

To conclude, the results provide considerable support for
the objective of this work. The main contributions of this
work are (1) a formal definition of RpD; (2) a taxonomy
of issues contributing towards RpD; (3) a list of causes
and effects having implications for software professionals
to identify and measure RpD in their projects; (4) a list
of strategies and tools to prevent or remove RpD; (5) the
identification of gaps in existing research to guide future
studies.

In future, we will continue our work with the gaps
identified in this study. Also, the evidence from this system-
atic review will be triangulated with new empirical studies.
Currently, our team is designing a Survey based on the
InsightTD questionnaire to investigate reproducibility issues
and challenges faced by scientific software developers in
real scenarios. The survey investigations would be followed
by interview-based case studies to identify and measure
RpD in scientific software projects across different research
organisations. This would result in a theoretical framework
of RpD to serve as a guide for its effective management, i.e.,
identification, measurement, prioritisation, monitoring and
payment.
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