
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

VUW
Computer Science

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@mcs.vuw.ac.nz

The Fox — A Tool for Java

Object Graph Analysis

Alex Potanin

Supervisors: James Noble and Robert Biddle

Submitted in partial fulfilment of the requirements for
Bachelor of Science with Honours in Computer Science.

Abstract

Examination of the memory graphs of object inter-dependencies is hard. Cur-
rent methods are either too time consuming for the average software developer or
they ignore important information. I present a flexible query language to analyse
a memory graph of a given Java program. I describe a tool, called Fox, that em-
ploys the query language to work with heap snapshots of running Java programs,
and present a selection of interesting metrics collected using this tool. The Fox
tool and the query language it supports will allow the researchers in the area of
aliasing in object-oriented systems to verify their theories quickly and reliably.

Contents

1 Introduction 2

2 Background 4
2.1 Object Graphs . 4
2.2 Aliasing . 5

2.2.1 A Simple Example of Aliasing . 5
2.2.2 The Elements Inside a Hashtable . 6
2.2.3 Java Applet Security Breach in JDK 1.1.1 8

2.3 Characteristics of Aliasing . 9
2.3.1 Encapsulation . 10
2.3.2 Ownership . 10
2.3.3 Confinement . 10

2.4 Object Graph Analysis . 13
2.4.1 Kacheck/J . 13
2.4.2 Lencevicius’ Query-Based Debuggers 14
2.4.3 HOWCOME and Delta Debugging . 14
2.4.4 DINO . 14
2.4.5 Jinsight . 14

3 Fox Project Overview 17
3.1 Starting Out . 17
3.2 The Heap Analysis Tool (HAT) by Bill Foote 17
3.3 The Rabbit That Came Out of the HAT . 19
3.4 The Fox That Came After The Rabbit . 19

4 The Fox Query Language 20
4.1 Designing the Query Language . 20
4.2 Object Properties . 21
4.3 Filters . 21
4.4 Queries . 25
4.5 Examples . 28

5 The Fox Query-Based Debugger 30
5.1 Architecture . 31
5.2 Internal Design of Fox . 32

6 Object Graph Exploration Using Fox 35
6.1 Detailed Examination of Single Heap Snapshots 35

6.1.1 Average Ownership Depth of the Fields 35
6.1.2 In-Degree Versus Out-Degree . 36

i

6.1.3 Visualising the Ownership Tree . 37
6.2 Multiple Snapshots of a Single Program . 38

6.2.1 Aliasing in ArgoUML . 39
6.2.2 The Fox Destroying its Internal Data Structures 42

6.3 Power Laws in Object Graphs . 42
6.4 Corpus Analysis . 47

6.4.1 Uniqueness . 47
6.4.2 Object Ownership . 47
6.4.3 Confinement . 48
6.4.4 General Collection of Metrics Across 52 Snapshots 50
6.4.5 Class Confinement Metrics Across 52 Snapshots 51

7 Conclusion 52
7.1 Contributions . 52
7.2 Future Work . 52

Bibliography 55

ii

List of Figures

2.1 An object graph of a doubly linked list . 5
2.2 A class diagram of a typical program that utilises a hashtable (borrowed from

[17]) . 7
2.3 An example of aliasing . 7
2.4 An alias to the array of identities allows a malicious applet to modify its

capabilities . 8
2.5 Ownership tree example (part 1 of 3): a memory graph 11
2.6 Ownership tree example (part 2 of 3): an ownership tree on top of the memory

graph . 11
2.7 Ownership tree example (part 3 of 3): an ownership tree 12
2.8 DINO — an ownership tree visualiser . 15
2.9 IBM Jinsight: Java memory analyser (picutre taken from [12]) 16

3.1 A screenshot of the HAT displaying all the objects in the root set 18
3.2 A screenshot of the Fox query-based debugger running on Solaris 18

4.1 How queries, filters, and properties fit together 22

5.1 A screenshot of the Fox query-based debugger 31
5.2 Architecture of Fox . 32
5.3 Class diagram of Fox . 34

6.1 Incoming versus outgoing references in LogFileSystem (complete graph) . . . 37
6.2 Incoming versus outgoing references in LogFileSystem (interesting subset of

the complete graph) . 38
6.3 Visualising HelloWorld using Fish Eye View 39
6.4 Screenshot of ArgoUML . 40
6.5 Aliasing at later and later stages of running ArgoUML 41
6.6 Incoming References in Forte . 43
6.7 Distribution of incoming references across the five snapshots 44
6.8 Distribution of static incoming references across the five snapshots 45
6.9 Distribution of outgoing references across the five snapshots 45
6.10 Incoming versus outgoing references in Forte 46
6.11 LOG of incoming versus LOG of outgoing references in Forte 46

iii

List of Tables

4.1 Properties supported by the FQL (Part 1 of 2) 23
4.2 Properties supported by the FQL (Part 2 of 2) 24
4.3 Filters supported by the FQL . 26
4.4 Standard queries supported by the FQL . 27
4.5 Control queries supported by the FQL . 28
4.6 Interactive queries supported by the FQL . 29

6.1 Five Snapshots of Fox Taken as it Processes Some Snapshot 42

iv

Acknowledgments

Firstly, I would like to thank my family, who have been great in helping me through this year.
I would like to thank my supervisors: James Noble and Robert Biddle for their constructive
feedback and help. I am also grateful for various suggestions expressed by people in the area
of aliasing. Finally, I am happy to have been surrounded by my fellow graduate software
engineering students: Dan, Rilla, Pippin, Stuart, Daniel, Angela, Mike, Matt, Kirk, and
Craig who helped me with their suggestions throughout the year.

I would also like to thank the Freemasons for granting me their scholarship for this year,
and Victoria University of Wellington for awarding me with VUW Graduate Award. Portions
of this work are supported by the Royal Society of New Zealand Marsden Fund.

1

Chapter 1

Introduction

As computers grew in computational power, so did the complexity of the software that came
with them. To help manage the growing size of software development projects, researchers
developed the concept of object-oriented programming. As one of the popular books on the
subject defines it [2]:

Object-oriented programming is a method of implementation in which programs
are organized as cooperative collections of objects, each of which represents an
instance of some class, and whose classes are all members of a hierarchy of classes
united via inheritance relationships.

Object-oriented programming has proved to be extremely popular and has been widely
adopted by the programming community. It has been shown to improve the understand-
ability, maintainability, and reusability of the software artifacts [26]. Programs are now
structured as collections of classes that model things in the real world, and program execu-
tion amounts to a large number of instances of these classes (objects) working together to
achieve a common goal.

One of the characteristics of object-oriented programs is that there are a large number of
objects present inside the program’s memory during its execution. Objects are connected to
each other via references and objects utilise these references to issue commands or send mes-
sages to other objects with which they cooperate. Thus, the contents of a typical program’s
memory can be thought of as a directed graph of objects, known as an object graph.

Software engineering, among many things, is concerned with software reliability. Given
that the object graph lies at the foundation of most modern software products, understanding
its behaviour and guaranteeing its reliable operation forms one of the essential tasks for
researchers.

The study of inter-object relationships in object-oriented systems requires the analysis of
large data structures corresponding to the object graphs. The Java programs we looked at
while working on this project contained between 3,000 and 350,000 objects. The complexity of
these object graphs is typically unexamined by the programmer but that does not mean that
it is free of errors and other defects. To be able to examine such large systems, researchers
and programmers alike use tools that allow object-to-object traversals and visualisation of
various parts of the graph [6, 9].

One of the common ways to analyse this structure (for example to gather statistical data
such as average number of incoming references, number of nodes in the object graph etc.)
is to write a specific program that will analyse the graph [19]. This project presents a tool
called the Fox Query-Based Debugger that allows systematic querying and examination of
the results related to the object graph.

2

The major motivation behind the development of Fox was the lack of tools that allow a
detailed examination of object graphs, in particular the study of encapsulation and ownership.
Furthermore, we wanted a generic tool that can be extended further with the least amount
of effort. Fox supports a query language that is subject to further development making it
possible to maximise the reusability of Fox’s measurement abilities.

Fox is oriented towards the analysis of the static snapshots of memory of a running Java
program. The major data structures that are subjected to querying are the complete object
graph and the ownership tree constructed from it [9].

This report is structured as follows:
Chapter 2, Background, introduces the essential concepts involved in the study of object

graphs and memory structures. It covers the ideas of aliasing, uniqueness, encapsulation,
ownership, and class confinement. It then goes on to introduce different approaches to the
study of object graphs, covering related tools in visualisation, control flow based analysis,
and query-based debugging.

Chapter 3, Fox Project Overview, explains where my work fits in the study of aliasing
and what I tried to achieve with my project.

Chapter 4, The Fox Query Language, describes the Fox Query Language (FQL1) that
forms the foundation of Fox. A user is asked to express his or her requests in this language
that Fox accepts, and produces required results. To help illustrate the query language, a
number of simple examples is presented.

Chapter 5, The Fox Query-Based Debugger, introduces the tool developed as part
of this Honours Project. It goes into the history of the tool development, covers in detail the
design and the rationale behind it, and presents how this tool fits into the world of object
graph exploration.

Chapter 6, Object Graph Exploration Using Fox, describes a number of experiments
that were conducted directly utilising the tool. It shows a number of contributions made by
our tool in the form of the measurements in the area of ownership, confinement, general
object graph properties, aliasing and more.

Finally, chapter 7, Conclusion, concludes this report, once more outlining the contri-
butions made by my Honours Project. It also includes a section on future work, presenting
a number of possible extensions to the tool and the query language, mostly driven by the
requirements laid out by the studies that the existence of Fox allows us to conduct.

1Pronounced “Ef-Qu-El”.

3

Chapter 2

Background

In this chapter, we present a number of fundamental concepts used in object-oriented pro-
gramming and object graphs. We will examine in detail object graphs and the idea of aliasing.
We will then describe some areas of study related to aliasing, which include uniqueness, en-
capsulation, ownership, and confinement, and survey a selection of tools related to object
graph analysis.

2.1 Object Graphs

An object graph, the object instances in the program and the links between them, is the
skeleton of an object-oriented program. Because each node in the graph represents an object,
the graph grows and changes as the program runs: it contains just a few objects when the
program is started, gains more objects as they are created, and loses objects when they are
no longer required. The structure of the graph (the links between objects) changes too, as
every assignment statement to an object’s field makes or changes an edge in the graph.

Figure 2.1 illustrates the object graph of a simple part of a program, in this case, a doubly
linked list of Student objects. The list itself is represented by the LinkedList object (an
instance of the LinkedList class, presumably), which has two references to Link objects
representing the head and tail of the list. Each Link object has two references to other
Link objects, the previous and the next Links in the list, and a third reference to one of
the Student objects contained in the list. Although the overall structure is clearly a general
directed graph with many cycles, rather than a tree or a directed acyclic graph, some objects
(such as the Student “Alice”) are accessed uniquely by only a single reference.

Object graphs form the foundation of any object-oriented program. They represent the
model of the world created by the software designer when describing the system of classes.
The methods employed by modern object-oriented design (classes, associations, interfaces,
inheritance, packages, patterns, UML, CRC Cards, etc.) are ultimately techniques for defin-
ing object graphs by describing the contents of the objects and the structure of the links
between them.

Part of memory where the information about all objects in the object graph is stored is
usually referred to as the heap. In Java, the heap is the only place where an object can be
stored; in C++, for example, objects can also be allocated in the program’s stack. When we
examine Java programs, we look at their heap, which gives us information about every single
object.

Inside the memory of a program, every single object has a 32-bit ID assigned to it. There
is no guarantee whether this ID is going to be reused after the object is destroyed but it
allows us to identify a single object uniquely among the other objects in program’s memory,
throughout that object’s lifetime.

4

Figure 2.1: An object graph of a doubly linked list

2.2 Aliasing

Aliasing occurs when there is more than one pointer referring to one object. This causes the
state of the object with respect to its referrers to be compromised because one referrer can
change the state of the object without others knowing about it.

In popular programming languages aliasing is endemic and unavoidable, as even something
as simple as the assignment statement causes an extra alias to be created. There has been
much research done that addressed the problems caused by aliasing, including alias protection
schemes [16, 17] and, in the case of assignment, alternatives to assignment statement in
component-based engineering [8].

In this section we present a number of small examples of problems caused by aliasing. We
hope that they will illustrate the motivation behind a large amount of research performed in
this area.

2.2.1 A Simple Example of Aliasing

Consider the following class Rectangle that has fours fields: x, y, width, and height.

class Rectangle {
public Integer x;
public Integer y;
public Integer width;
public Integer height;

public Rectangle(Integer x, Integer y,
Integer width, Integer height) {

this.x = x;
this.y = y;

5

this.width = width;
this.height = height;

}
}

Now, let’s say we will create an instance of this class as follows:

public static void main(String[] args) {
...
Integer x = new Integer(100);
Integer y = new Integer(50);
Integer width = new Integer(300);
Integer height = new Integer(200);
Rectangle r = new Rectangle(x, y, width, height);
...

}

Consider what will happen if we were to do the following later on in the main method:

...
x.setValue(400);
...

This will not only change a local variable x, it will also modify the position of the top-right
corner of our original Rectangle. This is a very simple example of the problems that can be
caused by aliasing, but in the two sections below, I will present a number of examples that
are closer to real life.

2.2.2 The Elements Inside a Hashtable

This example is based on the one discussed in detail by Noble, Potter, and Vitek on flexible
aliasing protection [17].

Imagine a typical container like a hashtable used in a student database implementation.
Figure 2.2 depicts a sample system with a Hashtable object having fields named size and
table. Any object inside the system can use this hashtable to store information about the
students. Every time a Student and, say, their RawMark are added into the hashtable, an
Entry object is created inside the Array pointed at by the table field. The entry will store
the reference to the Student object given to it and use it as a key inside the hashtable.

Now, there is no guarantee that nothing else is still pointing at the Student object (as
shown by the arrows pointing at some of the objects out of nowhere in figure 2.2). This
means that some of the objects that the hashtable relies upon for its state (i.e. the location
of the elements in the array is based on their hash code) are aliased.

To clarify the state of the hashtable, consider the figure 2.3. A hashtable a points at
an object with its size and an object with its contents. The elements inside the hashtable
contents are objects named i, j, etc. Adding another object, say k, that is still pointed at by
the external object d will cause one of the elements to be aliased and d will be potentially
able to modify the state of the hashtable contents as shown by the arrow between d and
contents in the figure.

This simple example illustrates that something as simple as a hashtable — widely used
in many programs written in Java — has a huge potential for aliasing related errors. For
example, the modification of the state of the hashtable element by some outside object can
cause its hash code to change. For some implementations of the hashtable lookups, it may
cause the container to lose track of the object.

6

Figure 2.2: A class diagram of a typical program that utilises a hashtable (borrowed from
[17])

Figure 2.3: An example of aliasing

7

Figure 2.4: An alias to the array of identities allows a malicious applet to modify its capa-
bilities

2.2.3 Java Applet Security Breach in JDK 1.1.1

This example is borrowed from the paper on confined types by Bokowski and Vitek [1]:

In Java, each class object (instance of class Class) stores a list of signers, which
contains references to objects of type java.security.Identity, representing the
principals under whose authority the class acts. This list is used by the security
architecture to determine the access rights of the class at runtime. A serious secu-
rity breach was found in the JDK 1.1.1 implementation which allowed untrusted
code to acquire extended access rights [23]. The breach was due to a reference
to the internal list of signers leaking out of the implementation of the security
package into an untrusted applet.

The way this breach could be exploited by a malicious applet is briefly outlined in figure
2.4. Every class, including the applet’s own class, has an array of Identities stored for
it inside the java.security package. This collections of so-called signers defines the access
rights of an applet or any other class. There is also a system-wide accessible array of all
possible Identities accessible through java.security.IdentityScope. Therefore, since
any applet could potentially obtain the reference to its own array, it can modify it by adding
the rest of the system-wide Identities to its own array.

The reason for this security breach lies in the code for the getSigners method in
java.security package:

private Identity[] signers;

8

...
public Identity[] getSigners() {

return signers;
}

As we can see, the method’s implementation exposes the hidden array for modification.
One of the possible fixes to this problem would have been to return a copy of the array
instead:

private Identity[] signers;
...
public Identity[] getSigners() {

Identity[] pub;
pub = new Identity[signers.length];
for (int i = 0; i < signers.length; i++) {

pub[i] = signers[i];
}
return pub;

}

An important point to note about this example, as pointed out by Bokowski and Vitek
in [1], is that “none of the standard Java protection mechanisms seem to help.” Such things
as “access modifiers and type abstraction are not relevant here,” since “the attack does not
interact with Identity objects, it only needs to acquire references to them and copy those
references.”

The paper goes on to introduce a novel and reliable way of checking for reference exposure
by introducing confined types that ensure that all the references to the instances of classes
that are confined originate from the objects in the same domain, which is taken to be a Java
package. In our example above, it allows the programmers of the java.security package to
confirm at compile time that “none of the key data structures used in code signing escape
the scope of their defining package.”

It should also be pointed out that confinement relates to classes, in particular their fully
qualified names - it guarantees that every instance of a confined class is going to be referenced
by instances of classes in the same package only. This is quite a strong restriction: sometimes
we can have classes such that their instances are rarely referred to by instances of classes
outside the defining package. We consider the latter instantaneously confined and we examine
a number of such instances in chapter 6.

2.3 Characteristics of Aliasing

There are a number of other well-known examples of aliasing-related defects and errors. These
cause concern for people who are trying to implement secure and reliable systems in reference-
abundant languages such as Java. To address these issues a number of characteristics of the
object graph are being explored. These include the uniqueness of objects (when they only
have a single incoming reference), object encapsulation (guaranteeing that things such as
hashtable elements will not be referred to from outside), and object ownership (exploring the
encapsulation of objects on a scale of the whole of the object graph). In this section I will
discuss these concepts in more detail.

9

2.3.1 Encapsulation

Encapsulation is about preserving the object boundaries. We were always taught in the
software engineering courses that information that is private to the object should not be
exposed. A similar concept applies to collections of objects. A private pointer to an object
that constitutes the state of another object should not be shared or given to anyone. These
relationships can be checked using query-based debuggers such as those by Lencevicius [14].
Our tool is also capable of doing this via the introduction of an appropriate query.

Uniqueness is the most basic way of guaranteeing encapsulation: a unique object is en-
capsulated within its sole referring object [3]. This implies that the surrounding object can
depend upon the unique object for its private state without the aliasing-related concerns.
When examining an object graph we can look at the percentage of objects that are unique
versus those that are not. We can examine what classes of objects tend to stay unique when
instantiated versus those that are rarely unique. All of these properties can be examined
using the tool that we are presenting in this report.

2.3.2 Ownership

Every program has an underlying object graph. Objects in the graph are destroyed and
created as the program runs. Java Virtual Machine (JVM) provides a service known as
garbage collection that ensures that those objects that are no longer needed by the program
are deleted so that memory that they occupy can be reused by new objects.

To be able to find unused objects, the garbage collector maintains a special selection of
objects called the root set. The garbage, or no longer used objects are then defined as follows:

An object is garbage if and only if there are no reference chains from some
object in the root set to it.

Ownership uses the concept of root set to structure object graphs. We posit a global “fake”
root r through which all the objects in the root set of an object graph can be accessed. Then,
ownership, which is based on the notion of dominators from the graph theory, can be defined
as follows:

An object a owns another object b if all the paths from the root r to the object
b go through a. In this case b is called the owner of a.

The implication of ownership is that no object outside the owner b is allowed to have a
reference to a. Ownership allows us to structure an object graph into an implicit ownership
tree.

Object ownership is in essence a generalisation of uniqueness [20] that underlies many
more sophisticated alias management schemes [16, 20, 5].

To clarify this concept, consider an example in figures 2.5, 2.6, and 2.7. The first one
gives a simple example of a memory graph with root R. The second one shows an ownership
tree constructed from the graph just before, note how it has exactly the same number of
nodes but a lot fewer edges. The third and final picture shows just the ownership tree.

2.3.3 Confinement

Every class in Java belongs to some package (if none is specified then it belongs to a so-
called default package). A class is called confined if all instances of it are only referred to by
instances of classes in the same package.

10

Figure 2.5: Ownership tree example (part 1 of 3): a memory graph

Figure 2.6: Ownership tree example (part 2 of 3): an ownership tree on top of the memory
graph

11

Figure 2.7: Ownership tree example (part 3 of 3): an ownership tree

The idea of confinement was explored by Bokowski and Vitek [1] and further by Grothoff,
Palsberg and Vitek [7]. Confinement was viewed from the point of view of security. For
example, in the JDK 1.1.1 aliasing case described above, the class Identity is defined inside
the java.security package. The problem arose when instances of classes from different
packages were allowed to directly access the Identity objects. Bokowski and Vitek in [1]
demonstrate a solution to the JDK 1.1.1 aliasing problem that uses an implementation of
Identity confined to the java.security package while exposing a public version of it to
the public. Since inside the package a new and secure version is going to be used for storing
the information, making it confined to the package renders it impossible to expose it.

The code below shows a more secure version of the solution to the JDK 1.1.1 problem
that was verified using their tools that confirmed that a class SecureIdentity is confined to
the java.security package.

confined class SecureIdentity ... {
...
// the original Identity implementation
...

}

public class Identity {
SecureIdentity target;
Identity(SecureIdentity t) {target = t; }
... // public operations on identities;

}

private SecureIdentity[] signers;

...

12

public Identity[] getSigners() {
Identity[] pub;
pub = new Identity[signers.length];
for (int i = 0; i < signers.length; i++) {

pub[i] = new Identity(signers[i]);
}
return pub;

}

There exists a number of tools [1, 7] that can examine code written in Java and check whether
among all possible object graphs produced by the code it can ever be the case that an instance
of a certain class is referred to by an instance of a class from a different package.

Finally, the package need not be the unit of confinement. For example, objects can also
be confined to some general domain defined by the programmer (for example by explicitly
enumerating the classes in each domain).

Both ownership and confinement relate to object’s encapsulation with respect to aliasing.
They restrict the amount of aliasing possible within the object graph. Ownership examines a
real picture of the object graph and states which objects are within other object’s “shadow”
in a sense that noone outside those objects underneath the owner in the ownership tree
is allowed to have references to those inside. Confinement, looks at the collection of classes
which will produce object graphs when executed. From this static code, confinement checkers
can derive instances of which classes will be guaranteed to stay within the “shadow” of their
defining package in a sense that noone outside those objects whose classes are in the same
package will have references to them throughout all possible lifetimes of a program.

2.4 Object Graph Analysis

Analysing object graphs has always been a popular topic in object-oriented software engineer-
ing research [29, 7, 20, 11, 14, 9]. One of the motivations is that they can provide a valuable
insight into the real behaviour of a given program, sometimes different from the intended
behaviour created by the programmer(s) who wrote the underlying classes. Such analysis
can help us with understanding, debugging, and maintaining object-oriented programs.

There are many approaches taken to help with the understanding of object graphs. They
include dynamic visualisation of the inter-object relationships as the program runs [29, 9],
code analysis predicting all possible object graphs resulting from the underlying class struc-
ture [7], and query-based debuggers that verify that certain inter-object relationships hold
throughout the graph existence [14].

The study of memory structures is a nontrivial task. Java programs that we have analysed
contained anywhere between 3,000 and over 400,000 objects at the time that a memory
snapshot was taken. Thus people usually tackle the object graphs in two different ways:
either by examining a static snapshot of the heap in great detail, or by verifying simple, and
thus fast to calculate, properties of the object structure as the program runs.

In this section we present a small selection of the tools we looked at that are designed to
assist the software engineering researchers and programmers in object graph analysis.

2.4.1 Kacheck/J

Kacheck/J is presented by Grothoff, Palsberg and Vitek in [7] and is designed to analyse a
large number of Java classes and derive which ones of them are confined to their defining

13

packages and which ones are not. It is a command line tool written in Java which accepts
a path to the source base of class files corresponding to the program we wish to analyse for
confinement. As the result, it will report which classes are guaranteed to have no references to
them from outside of their defining package throughout all possible lifetimes of the program.
In addition, this tool can display which parts of the code violate confinement so that the
program can be changed accordingly if necessary.

2.4.2 Lencevicius’ Query-Based Debuggers

Lencevicius’ work in query-based debugging is summarised in [14], it allows a programmer
to either dynamically (as the program is running) or statically (as the program’s memory
snapshot is considered) verify relationships between objects. For example, the following query
will verify if all the nodes in a linked list point to different elements:

LinkedListNode* l1, l2; // Types required by the expression below.
l1.element != l2.element; // Relationship to verify.

Lencevicius’ work clearly demonstrates the advantage of having a flexible query language
that can be used to specify the relationship that a programmer wishes to verify.

2.4.3 HOWCOME and Delta Debugging

HOWCOME is a cause-effect gap detector written by Zeller [28]. It constitutes a part of the
work on the Delta Debugging Project [27].

The problem with most bugs inside programs is that the cause of an error may have
happened long before the effect of an error is discovered. Zeller proposes to track the changes
in the program’s memory graph in the steps preceding the error being detected to recover
the parts of the program relevant to the error, thus narrowing down the cause of the error
without any intervention by the programmer:

Consider the execution of a failing program as a series of program states consisting
of variables and their values. Each state induces the following state, up to the
failure. Which part of a program is relevant to failure? We show how Delta
Debugging algorithm isolates the relevant variables and values by systematically
narrowing the state difference between a passing run and a failing run.

2.4.4 DINO

DINO is an ownership tree visualisation tool written by Trent Hill [9]. Figure 2.8 shows
the tool in action visualising how the ownership tree of a simple compiler program changes
through the program’s run. DINO runs in parallel to the program and detects the changes
in the ownership tree, and these are visualised appropriately. Alternatively, it may also be
run in the mode where it saves information about the changes in a file that can be visualised
at a later stage.

2.4.5 Jinsight

Jinsight is written by IBM and allows a detailed post-mortem analysis of a Java program.
It traces all object creations and destructions, method calls, memory usage and more. The
results of program monitoring are stored in a file and can be visualised and analysed using a
graphic analysis program that comes as part of it. Figure 2.9 shows a number of screenshots
taken from its documentation [12].

14

Figure 2.8: DINO — an ownership tree visualiser

15

Figure 2.9: IBM Jinsight: Java memory analyser (picutre taken from [12])

16

Chapter 3

Fox Project Overview

This chapter explains where our work fits into the study of aliasing and what we have tried
to achieve with this project.

3.1 Starting Out

We started our work by examining the current state of research in the area of aliasing, and
in particular we were interested in a detailed study of ownership. For example, we found a
large number of tools that would try to visualise the ownership trees inside a program, but
we couldn’t find a tool to estimate ownership parameters such as the average depth of an
object inside a complete ownership tree, or how much effect containers such as hashtables
have on ownership.

This motivated us to explore the technologies available to extract information about object
graphs and ownership. Since we were trying to access information about a program’s heap in
the most straightforward way, we chose Java because it has a large number of standardised
interfaces, and libraries to support them, that come with Sun’s Java Developer Kit (JDK).

We first tried to utilise the Java Debugger Interface (JDI) that allows dynamic monitoring
of any Java program as it executes. Unfortunately, if we try to track object allocations as
they occur across all classes, it becomes too slow for modern computers to process and still
keep the programs usable. The simplest program, with 3000 new object allocations 1, was
slowed down by approximately 100 times. Thus, we decided that dynamically monitoring
the ownership structure of a complete object graph was beyond our capability at the time.
Visualisers successfully avoided this problem by only visualising the relevant part of the pro-
gram (for example, user-written objects). We, on the other hand, needed to gather ownership
information across the whole graph.

This caused us to turn our attention to trying to capture a complete image of the pro-
gram’s object graph examining it in detail, rather than resorting to a simplified and slow
dynamic analysis.

3.2 The Heap Analysis Tool (HAT) by Bill Foote

As we were exploring the technologies at our disposal we came across the Java Virtual Machine
Profiler Interface (JVMPI) that forms part of Sun’s JDK 1.2 or higher [24]. Part of this
interface allows the user to save a snapshot of the entire heap of any Java program into a

1This program is considered again in chapter 6 — nearly all of the objects in it are allocated by the Java
Virtual Machine for its internal purposes.

17

Figure 3.1: A screenshot of the HAT displaying all the objects in the root set

Figure 3.2: A screenshot of the Fox query-based debugger running on Solaris

18

file. The Heap Profiler (HPROF) library that comes as part of Sun’s JDK allows the user to
control when this happens, and, can produce a number of files representing heap snapshots.

These heap snapshots can be parsed using a separate Heap Analysis Tool (HAT) library
written by Bill Foote [6] that creates a data structure representing the objects inside the heap
being analysed. HAT then proceeds to start a server on a local machine that can be accessed
using a common web browser to navigate a complete graph of objects inside the snapshot.
Figure 3.1 shows a web browser displaying a page served by HAT that displays all the objects
present in the root set of a given heap.

Unfortunately, HAT only allows one to browse the snapshot and has no analysis abilities.

3.3 The Rabbit That Came Out of the HAT

We proceeded to write a tool named Rabbit [19] that would use information from HAT
about the objects to construct an ownership tree from the object graph, using a well known
dominator construction algorithm [15]. The resulting data structures are utilised by the
code in Rabbit to calculate the required metrics. Each metric calculation was specified by
implementing a class conforming to the Experiment interface so that it could be called in
order by the main function in Rabbit. Introducing a new experiment meant implementing a
new class that would directly access the internal representation of the heap’s objects and the
ownership tree to perform its measurements.

Running a new experiment in Rabbit, even if it was a small change to the previous one,
required it to be recompiled and the heap snapshot to be reloaded and all other metrics
recalculated. Rabbit allowed us to perform the experiments, but was hard to use.

Rabbit did not have a query language, and we had to write a completely new class in
Java that would access the data structures storing the information about the heap snapshot
being analysed. Any attempt to answer a new question about the heap snapshot required the
modification of the source code of the tool, complete recompilation, and reloading of the heap
snapshot in question. It took a large amount of time and introduced errors in the software.

3.4 The Fox That Came After The Rabbit

After examining the related research in object graph analysis using query-based debuggers,
especially the work by Lencevicius [14], we decided to improve the flexibility of our tool by
introducing a query language. Figure 3.2 shows a new tool that we developed, called Fox, as
a better version of Rabbit, smarter and easier to use.

Fox was used to reproduce the results obtained using Rabbit and gave us a lot of ideas
for new studies. In the rest of this report, we will cover the query language, the tool itself,
and a collection of studies conducted using Fox.

19

Chapter 4

The Fox Query Language

In this chapter we present the query language that lies at the foundation of our tool. We will
go over the rationale behind its design, the language itself, and a number of small examples
to illustrate its syntax.

4.1 Designing the Query Language

The study of object graphs is about objects, hence the central concept underlying the Fox
Query Language (FQL 1) is the heap object.

Once the information about a single heap snapshot is loaded into memory, we take a
view of it as that of a single database table with each row containing information about a
single object and each column denoting a particular property of the object (e.g. object’s ID,
object’s class name etc.).

We access information about each object by accessing its properties. Thus, for each heap
object we calculate a number of properties and store them together inside a large table so
that it can be closely examined by a user.

We extend our analogy with a common database by allowing selection of objects from
the table corresponding to a heap’s snapshot in a manner similar to the SELECT ... WHERE
statement in the Structured Query Language (SQL). We refer to the selection part of our
query language as filters. Filters allow us to restrict the objects to those meeting a number
of constraints on their properties.

Finally, to allow the user to utilise the information available to them, we provide a number
of queries that can be run upon different selections objects returned by filters. Queries include
a standard set of operations such as counting the objects or finding a minimum or a maximum
value of a particular property, a set of control queries that are designed to be inserted into
scripts to tell Fox when to load another heap snapshot or when to save the results, and a
set of interactive queries such as QVisualiseTree that visualises an ownership tree of the
current memory graph.

Put together, the syntax of FQL works as follows:

<query> :== query_name([<filter_combination>] [,query_parameters]*);

<filter_combination> :== filter_name([filter_parameters,]* <filter_combination>);
<filter_combination> :== filter_name(<filter_combination> [,<filter_combination>]*);
<filter_combination> :== FSnapshot();

1FQL is pronounced “Ef-Qu-El”

20

In the tables below we present precise syntax for each query and filter. Figure 4.1 gives a
visual example of how a typical query works together with filters and properties. In the rest
of this section, we address the three fundamental concepts of FQL: properties, filters, and
queries.

4.2 Object Properties

Most information about an object can be stored inside its properties. Properties are calcu-
lated by Fox as the memory graph is loaded. Some properties such as PID (object’s unique
ID), and PClassName (object’s class name) come from the heap itself as they are intrinsic to
the objects when used by the garbage collector inside the Java Virtual Machine. These are
simply read from the heap snapshot file and recorded appropriately.

Most other properties require to be calculated by Fox. While object graph specific prop-
erties such as PNumberOfIncomingReferences (number of objects that have a reference to
the current object), PNumberOfDynamicIncomingReferences (number of objects that are al-
located as local variables inside the methods, rather then inside the heap or as part of Java
Virtual Machine, that have a reference to the current object), PNumberOfStaticIncoming
References (number of objects that are not dynamic that have a reference to the current ob-
ject), and PNumberOfOutgoingReferences (number of objects that the current object refers
to) can be calculated by a closer examination of the memory graph, more complex proper-
ties that relate to ownership and confinement require Fox to first construct an appropriate
representation of the heap information.

After the ownership tree of the graph is constructed as described by Lengauer and Tarjan
[15], it is possible to calculate PDepthFromRoot (number of objects in the path from the root
of the ownership tree to the current object, excluding the current object) for each object.
Unfortunately, as we show in chapter 6, this value is usually skewed by the data structures
that restrict references to their internal nodes (e.g. linked lists). To fight this, we have created
a new property called PDepthFromRootAfterFolding that addressed the issue at hand by
“folding” the reference chains consisting of objects of the same class.

Graph theoretic properties supported by Fox are POwner that stores the ID of an object
that is a parent of the current object in the ownership tree, and POwnershipKids that stores
a list of ID’s of objects that are children of the current object in the ownership tree. For the
memory graph, we store PReferers and PRefersTo that store the lists of ID’s of objects that
correspondingly refer to the current object or that the current object refers to.

Other properties include PConfinement that records whether the current object is strongly,
weakly, or not instantaneously confined, and PIsField that is true if and only if an object is
pointed at by at least one other object via that object’s field.

Finally, to allow the filters to compare the property values with parameters supplied by a
user, each property has a type. The types include integer, boolean, string, and list of integers.
This allows the parser to check if the values supplied to the filters are compatible with those
stored inside the properties.

In tables 4.1 and 4.2 I present all the properties supported at the time this was written.

4.3 Filters

For some queries, like the one to count the objects, it is more useful to work with only part
of the heap snapshot, thus the FQL requires some filtering ability. We introduce the concept
of filters to deal with it. Filters are designed to be put together so that output of one filter

21

Figure 4.1: How queries, filters, and properties fit together

22

Property Type Description
PID Integer This property gives a unique ID

of an object in the heap.
PClassName String This property simply stores the

name of the class that the object
is an instance of. It is also
known as the type of the object.

PNumberOfIncomingReferences Integer This property gives the number of
objects that point at the object
in question.

PNumberOfDynamicIncomingReferences Integer This property gives the number of
objects that point at the object
in question, only it restricts them
to those that have been allocated as
local variables inside methods and
are not used by the JVM.

PNumberOfStaticIncomingReferences Integer This property also gives the
number of objects that point at the
object in question, only it restricts
them to those that are not dynamic.

PNumberOfOutgoingReferences Integer This property stores the number
of objects that our object points
at. This can be also thought of
as the size of the object.

PDepthFromRoot Integer This property gives the depth of
the object in the ownership tree
constructed based upon the
object graph. It can also
be considered as the number of
encapsulation levels above the
object. (See chapter 2.)

PDepthFromRootAfterFolding Integer This property is similar to the
PDepthFromRoot above, except
that every time the object is
owned by the object of the same
class, they are considered to
be at the same depth. This avoids
the bias imposed by such
data structures as linked lists.

Table 4.1: Properties supported by the FQL (Part 1 of 2)

23

Property Type Description
POwner Integer This property stores a direct

parent of the current object in
the ownership tree.

POwnershipKids List of Integers This property stores the
objects that are children
of the current object in
the ownership tree.

PReferers List of Integers This property stores the objects
that refer to the current object
in the memory graph.

PRefersTo List of Integers This property stores those object
that the current object refers
to in the memory graph.

PIsField Boolean This property is true if and only
if the object is pointed at
by a field in some other object.

PConfinement String This property can take the
following values: NONE, WEAK,
or STRONG. It records whether
an object is not confined,
weakly, or strongly confined.
See chapter 2 for the
discussion of the notion of
confinement.

Table 4.2: Properties supported by the FQL (Part 2 of 2)

24

serves as input to another filter. There is a special filter called FSnapshot() that can be used
as input to other filters that returns all the objects in memory graph.

The core of the filter part of the FQL lies in FIntegerProperty, FBooleanProperty,
FStringProperty, and FIntegerListProperty filters. These respectively select objects
based on the restrictions to their properties, which are of the corresponding type. Addi-
tional filters include FUnion, FIntersection, and FMinus which accept two input filters and
return objects in correspondingly union, intersection, or set difference of the sets returned by
the input filters. Table 4.3 lists the filters supported by the FQL.

The reasoning behind a somewhat cumbersome syntax is the ease with which filters can
be parsed and the ease with which the user can be sure that they are supplying the values
of the right type. Chapter 7 discusses some ideas for future work that can improve the way
filters are expressed.

4.4 Queries

Queries are where all the work is performed. There are several kinds of queries: standard
queries similar to the ones that can be found in SQL, control queries that tell Fox which heap
snapshot to load or where to save the results obtained so far, and a set of interactive queries
designed for the user to explore the snapshot in a lot more detail. The standard queries are
also expanded to return the same data as they return across the objects passing the filter,
only on a per class basis, as discussed below.

Most SQL implementations allow to count the objects that meet a particular restriction,
find the maximum or the minimum of some value across the objects, or to find which percent-
age of objects pass a given combination of filters with respect to the whole memory graph.
Every query in the table accepts a combination of filters as the first parameter. QCount and
QPercentage queries then proceed to count the object that pass a given filter combination.
The QAverage, QMaximum, and QMinimum queries also accept a second parameter with the
property that they base their calculations upon.

Standard queries base their calculations on all the objects returned by the filter. At times,
it is more important to track the distribution of the numbers we are getting across the objects
of the same class. For example, it is interesting to compare the depth in the ownership tree
of objects of the type Hashtable and objects of the type HashtableElement in the hope
that the latter is deeper in the tree than the former. For this purpose, we provide versions
of standard queries that return the results separated for each class of objects. The result is
going to be a list of class names together with the measurement across all the instances of a
given class. Here is a simple example:

Class java.util.Hashtable has 279 instances and on
average each instance node is 3.96 deep.
Class java.util.Hashtable$Entry[]; has 297 instances
and on average each instance node is 4.90 deep.
Class java.util.Hashtable$Entry has 3990 instances
and on average each instance node is 5.37 deep.

Table 4.4 lists standard queries together with their per class versions.
Control queries are the kinds of queries that can be provided in the user interface. They

include the commands to load a heap snapshot (QLoadHeapSnapshot), list currently loaded
heap snapshots (QListHeapSnapshots), save the current contents of the window with the
results of running the queries (QSaveResults), and clear the contents of the results window
(QClearResults). The reason for providing this queries in addition to the user interface

25

Filter Syntax Followed by its Description
FSnapshot();

This filter represents all the objects in the heap snapshot.
FIntegerProperty("<PROPERTY>", [=, !=, >, <, >=, <=] [0-9]+, <FILTER>);

This filter selects the objects from those that pass a given filter.
If the property is an integer, it will compare it with the number given
using the comparison operator given. It will only keep those objects
that pass the comparison. If the property is not an integer, it will fail.
FBooleanProperty("<PROPERTY>", [true | false], <FILTER>);

This filter selects the objects from those that pass a given filter
and then have a given property being either true or false as given.
It will fail if the property given is not of boolean type itself.
FStringProperty("<PROPERTY>", <user string>, <FILTER>);

This filter selects the objects from those that pass a given filter.
If the property is a string, it is compared with the given user string
and if they are equal, the object is accepted. Otherwise the filter fails.
FIntegerListProperty("<PROPERTY>", [in | notin] [0-9]+, <FILTER>);

This filter selects the objects from those that pass a given filter.
If the property is an integer lists, it will see if the number given
is in the list or not in the list and will only keep those objects
that satisfy the relationship specified. If the property is not an
integer list, it will fail.
FUnion(<FILTER>, <FILTER>);

This filters selects the objects from those that pass at least
one of the filters given. The duplicates that pass both filters
are eliminated.
FIntersection(<FILTER>, <FILTER>);

This filters selects the objects from those that pass both
of the filters given.
FMinus(<FILTER>, <FILTER>);

This filters selects the objects from those that pass the first
filter but not the second one of the filters given.

Table 4.3: Filters supported by the FQL

26

Query Syntax Followed by its Description
QCount("<FILTER>");
QCountPerClass("<FILTER>");

This query simply counts and returns the number of objects passing a given filter.
QAverage("<FILTER>", "<PROPERTY>");
QAveragePerClass("<FILTER>", "<PROPERTY>");

This query accepts an integer property and calculates the average of its value
across the objects passing a filter.
QMaximum("<FILTER>", "<PROPERTY>");
QMaximumPerClass("<FILTER>", "<PROPERTY>");

This query accepts an integer property and finds the maximum of its value
across the objects passing a filter.
QMinimum("<FILTER>", "<PROPERTY>");
QMinimumPerClass("<FILTER>", "<PROPERTY>");

This query accepts an integer property and finds the minimum of its value
across the objects passing a filter.
QPercentage("<FILTER>");
QPercentagePerClass("<FILTER>");

This query calculates what percentage of all the objects in the heap snapshot
pass the filter.

NB! In case of the per class version of this query, the percentage of
objects with respect to all the objects of the same class is going to be returned.

Table 4.4: Standard queries supported by the FQL

27

Query Syntax Followed by its Description
QLoadHeapSnapshot("/path/to/the/heap/snapshot.hprof");

This query loads a heap snapshot stored in a file that is pointed to by
the file name parameter. The file is obtained using the HPROF library [24].
Chapter 5 gives more detail about how it works.
QListHeapSnapshots();

This query displays the names of the loaded heap snapshots. At the time of
writing only one snapshot was allowed to be loaded, but the tool can easily
be extended to support more than one. Thus the query language was designed
to account for it.
QSaveResults("/path/to/the/results/file.txt", [true | false]);
This query saves the results to a file that is pointed to by
the file name parameter. Second parameter specifies whether this query
is allowed to overwrite the file if it already exists.
QClearResults();
This query simply clears the window with the results. It is useful
in combination with QSaveResults query just above.

Table 4.5: Control queries supported by the FQL

controls is to allow the user to write a reasonably long script using FQL that can be executed
by Fox over an extended period of time. This script can go through a large number of heap
snapshots, load each of them, process and save the results in different locations for further
analysis by the user. These queries are listed in table 4.5.

The final category of queries are the interactive queries that are designed to be used when
a user wants to closely examine a particular snapshot themselves, rather than letting Fox run
in a batch mode. They include a help command (QHelp), a query to visualise an ownership
tree of the memory graph (QVisualiseTree), and a query to traverse the memory graph
of objects using HAT [6] that will serve them on a given port for the user to use any web
browser to explore it (QHAT). These are described in table 4.6.

There is also a special query called QProperties that doesn’t have to be used interactively.
It is presented in table 4.6 and is designed to simply output a comma separated list of property
values for all the objects passing a given filter. Only properties supplied as arguments will be
displayed. We were using this query extensively to study distributions of various properties
of objects.

4.5 Examples

These sections presents a number of simple examples that serve to illustrate the query lan-
guage. They are not designed to go into the detailed analysis, rather they just provide the
reader with a feel for the query language.

To count the number of objects in the heap snapshots, we need to use the QCount query
over the objects returned by the FSnapshot filter:

QCount("FSnapshot()");

To get only the number of objects that have a class name java.lang.String we have to run
the query that filters out the required objects using PClassName property:

28

Query Syntax Followed by its Description
QHelp();

This query simply lists all the properties, filters, and queries supported by the tool.
It also displays the syntax of each query and filter, and the type of each property.
QVisualiseTree([object ID]);

This query visualises a complete ownership tree using a fish eye view [25].
If the object ID is supplied, it only shows the objects below the given one
in the tree, if no object ID is supplied, the whole tree is displayed.
QHAT([port number]);
This query will start a server using the HAT library [6] ability to allow the
user to use any web browser to traverse the memory graph.
QProperties("<FILTER>", ["<PROPERTY>"]*);

This query is used to produce a comma-separated list of property values
of all the objects passing the filter. This result can be saved into a CSV
file and loaded into a spreadsheet program such as MS Excel or GNUmeric for
further analysis. Most of the more detailed analysis we performed was done
using this query together with MS Excel.

Table 4.6: Interactive queries supported by the FQL

QCount("FStringProperty("PClassName", java.lang.String, FSnapshot()));

Finally, to figure out which percentage of objects are strings we use QPercentage query:

QPercentage("FStringProperty("PClassName", java.lang.String, FSnapshot()));

More extensive examples of using FQL are provided in chapter 6.

29

Chapter 5

The Fox Query-Based Debugger

In this section we present our tool, called Fox. Fox is designed to explore a snapshot of the
program’s heap taken at any time during its run. This approach allows us to look at a large
corpus of Java programs and explore what really happens inside the programs memory. It
provides the user with the query language that can be used to quickly extract information
about an object graph.

To obtain a snapshot of any Java program, we need to run the program using special
options to the java command. These options are supported by Sun’s JDK 1.2 or higher and
execute the Heap Profiler library that comes with it. The syntax of the options is as follows:

Hprof usage: -Xrunhprof[:help]|[<option>=<value>, ...]

Option Name and Value Description Default
--------------------- ---------------------- -------
heap=dump|sites|all heap profiling all
cpu=samples|times|old CPU usage off
monitor=y|n monitor contention n
format=a|b ascii or binary output a
file=<file> write data to file java.hprof(.txt for ascii)
net=<host>:<port> send data over a socket write to file
depth=<size> stack trace depth 4
cutoff=<value> output cutoff point 0.0001
lineno=y|n line number in traces? y
thread=y|n thread in traces? n
doe=y|n dump on exit? y

Example: java -Xrunhprof:cpu=samples,file=log.txt,depth=3 FooClass

This implies that we can only get a snapshot of a Java program if we can run it from the
command line. Some programs, although mostly implemented in Java, use an OS-specific
binary to start them. These include some major applications as Sun’s HotJava and IBM’s
Eclipse. Application such as these cannot be easily analysed , since HPROF cannot be used
to obtain a heap snapshot.

The HAT requires the heap snapshots to be saved in a binary form, so the way we usually
use HPROF is:

java -Xrunhprof:file=Snapshot.hprof,format=b,depth=42,thread=y,doe=n

Then, we would wait until the time when we want to dump the heap of the application and
press Ctrl+\ in the window where the java command was run. For Windows systems, it is

30

Figure 5.1: A screenshot of the Fox query-based debugger

required to press Ctrl+Break in the command prompt window to achieve the same result.
We usually keep one heap snapshot per one file.

The control of the tool is performed via the query language discussed in chapter 4. The
user interface is designed to be minimalistic with only two major text areas: one for entering
and editing the queries and one for displaying the results. Each window can have its contents
loaded or saved to/from a file or cleared. There are two extra buttons: to execute a query
and to quit the program.

Certain tasks, such as loading the heap snapshots, are controlled from the query language
and we could argue that the user interface controls should take this responsibility. The reason
these functions are implemented inside the query language is to simplify batch processing of
a large number of queries across a number of heap snapshots. This way, a single file with
queries can be loaded into Fox and run for an extended period of time analysing different
heap snapshots.

Architecture and design of Fox are explained in the section that follows. The main point of
our work was to find the easiest and the most straightforward approach to study the object
graphs of Java programs so that we can perform various measurements across the widest
possible array of programs. Fox utilises such a method and we have so far used it successfully
and plan to perform an extensive study of object graphs in the work that will follow.

5.1 Architecture

Figure 5.2 depicts the architecture of our approach to the study of memory structures. Con-
sider a Java program being executed inside a Java Virtual Machine. We use the HPROF

31

Figure 5.2: Architecture of Fox

Library that utilises the JVMPI to access the Heap of the Java program stored inside the
JVM and dump a complete heap snapshot into a file.

We then start Fox that uses the HAT Library to load a file with the heap snapshot and
then proceeds to construct a complete ownership tree using a fake root just above the root
set. It then initialises all the heap objects using its own data structure and fills in their
properties. To save the memory, Fox only leaves an array of all the heap objects together
with their properties to be used by queries and filters run after the heap snapshot is loaded.
The memory used up by the HAT and the ownership tree is freed by setting the respective
pointers to null thus telling the Java garbage collector that those data structures are not
required any longer. One of the experiments that we perform with Fox in chapter 6 is taking
a snapshot of Fox itself and checking if those large data structures were mistakenly aliased
and thus not garbage collected.

The results of running the queries upon the snapshot can be saved and further analysed
using such data management programs as Microsoft Excel or GNUmeric. A particularly
useful query to produce the data in appropriate format for Excel would be QProperties().
This outputs a comma-separated view (CSV) of the data. The latter file can be loaded into
either Excel or GNUmeric.

5.2 Internal Design of Fox

Finally, to conclude this chapter’s discussion of the tool, we would like to briefly point out
the way we designed Fox. After having had a good experience with Rabbit, we took an
approach that lead us to the simplest possible design that meets the requirement of having

32

an easily extensible tool that handles heap data structures and allows the query language to
be extended independently of them.

Figure 5.3 shows the essential classes and packages present inside Fox. There is a very
little number of them and the extension of the query language is simply performed by defining
new classes for queries, filters, and properties by extending the corresponding classes: Query,
Filter, and Property with the new element being introduced. Together with the classes like
Program, Main, and Window handling the control of the program and utility packages tool
and heap the design of Fox forms a good framework into which new filters, properties and
queries can be added without modifying any of the external code. As long as they follow the
interface specified by the classes they extend, they will be automatically integrated into the
rest of the tool.

Chapter 4 explains those queries, filters, and properties that are already implemented
inside Fox. Fox will be available for download in the near future from:

http://www.mcs.vuw.ac.nz/~alex/fox/

33

Figure 5.3: Class diagram of Fox

34

Chapter 6

Object Graph Exploration Using
Fox

In this chapter we illustrate our tool by presenting a selection of studies performed using
Fox. We concentrate on four studies: examining a single heap snapshot in detail, exploring
a collection of heap snapshots taken at different stages as the program runs, presenting the
distribution of incoming and outgoing references that demonstrates the presence of power
laws, and finally studying a collection of programs to see how different properties of object
graphs hold for a large corpus of heap snapshots, rather than a single one.

6.1 Detailed Examination of Single Heap Snapshots

This section demonstrates how Fox and FQL can be used to analyse a heap snapshots of a
single program.

6.1.1 Average Ownership Depth of the Fields

In this subsection we look at the heap snapshot of the Java program called Satin that forms
a part of the pen-based user interface research at University of California, Berkeley.

First, we write a query to find out the average depth of any object in the heap snap-
shot. We need the QAverage query together with the global FSnapshot filter and the
PDepthFromRoot property:

QAverage("FSnapshot()", "PDepthFromRoot");

Running the query above, gives us the following result:

Averaged 7.83 across the objects passing the filter.

Which means that a typical object about 7 or 8 levels deep in the ownership tree. This
number is actually biased by such data structures as linked lists (see the discussion in the
section on queries). To get a more precise picture, we need to average the so-called depth
after folding. The following query gives us the desired result:

QAverage("FSnapshot()", "PDepthFromRootAfterFolding");

Giving:

Averaged 3.44 across the objects passing the filter.

35

Now, we would like to look at the number of objects that are fields and calculate their
depth after folding. We need to construct a combination of filters FBooleanProperty and
FSnapshot, where the boolean property is PIsField. The following queries are going to
answer our questions:

QAverage("FBooleanProperty("PIsField", true, FSnapshot())",
"PDepthFromRoot");

QAverage("FBooleanProperty("PIsField", true, FSnapshot())",
"PDepthFromRootAfterFolding");

Giving:

Averaged 8.39 across the objects passing the filter.
Averaged 3.11 across the objects passing the filter.

We can see that although 8.39 is greater than 7.83 by a whole level, if we fold up the tree, the
fields are actually positioned shallower since 3.11 is less than 3.44. We can now hypothesise
that while in a generic ownership tree, the fields in Satin were deeper by an extra level,
possibly provided by the object containing the field, in general being a field doesn’t have
much effect on the object encapsulation inside other objects. It seems quite likely that fields
are pointed at by unrelated objects more often than non fields. At this stage, I will stop
discussing this issue as it is not supported by a large enough data set.

6.1.2 In-Degree Versus Out-Degree

This is a small study that compares the number of incoming references to each object with
the corresponding number of outgoing references. The object graph in question came from a
small program called the LogFileSystem that implements a simple log-based file system and
is around 1000 lines long.

To obtain the results, the following queries were run to load the heap snapshot and
produce a comma separated file plotted using MS Excel:

QLoadHeapSnapshot("/User/alex/Honours/HeapSnapshots/LogFileSystem.hprof");

QProperties("FSnapshot()",
"PNumberOfDynamicIncomingReferences",
"PNumberOfOutgoingReferences");

After saving the results and loading them into Excel, the graphs in figures 6.1 and 6.2
were produced. The second figure contains the part of the graph with 96.81% of all objects,
but excluding the extreme-valued points.

As a small point of interest, I ran two small queries that calculated that there are 7845
objects with 1 incoming and 0 outgoing references and that there are 94 objects with 0
incoming and 1 outgoing reference. The latter surprised me and the third query was ran
to verify that all the latter objects are indeed in the root set. Here are the aforementioned
queries:

QCount("FIntegerProperty("PNumberOfDynamicIncomingReferences", = 0,
FIntegerProperty("PNumberOfOutgoingReferences", = 1,
FSnapshot()))");

QCount("FIntegerProperty("PNumberOfDynamicIncomingReferences", = 1,
FIntegerProperty("PNumberOfOutgoingReferences", = 0,

36

Figure 6.1: Incoming versus outgoing references in LogFileSystem (complete graph)

FSnapshot()))");
QAverage("FIntegerProperty("PNumberOfDynamicIncomingReferences", = 0,

FIntegerProperty("PNumberOfOutgoingReferences", = 1,
FSnapshot()))",
"PDepthFromRoot");

Giving:

Counted 94 objects passing the filter.
Counted 7845 objects passing the filter.
Averaged 1.0 across the objects passing the filter.

A more detailed analysis of incoming and outgoing references is presented in the later
chapter covering the Object Graph Exploration Using Fox.

6.1.3 Visualising the Ownership Tree

Consider the following program written in Java:

public class HelloWorld {
public static void main(String[] args) {

for (int i = 0; i < 1000000; i++) {
for (int j = 0; j < 100; j++) {

// Do nothing.
}

}
}

}

37

Figure 6.2: Incoming versus outgoing references in LogFileSystem (interesting subset of the
complete graph)

From our point of view, it is a rather simple program, but surprisingly, counting the number
of objects in the heap snapshot:

QCount("FSnapshot()");

Gives:

Counted 2633 objects passing the filter.

Which means that one of the simplest programs that you can write in Java will have around
three thousand objects! This makes the task of visualising the ownership tree quite compli-
cated, especially for large snapshots like Forte, containing around 350,000 objects. Running
the QVisualiseTree query produced the fish eye view [25] shown in figure 6.3.

Fish eye view allows us to examine the objects we are interested in in greater detail,
without letting other objects to get in the way. At the same time, it allows us to have an
overview of the rest of the system of objects by looking at their concentration near the edges
of the fish eye view.

6.2 Multiple Snapshots of a Single Program

In this section we consider several programs in detail, exploring the growth in the number
of aliased objects in ArgoUML, the presence of power law dependency on references in the
memory graphs of Forte, ArgoUML, BlueJ, Jinsight, and Satin, and the structure of
the ownership tree in one of the simplest Java programs possible.

38

Figure 6.3: Visualising HelloWorld using Fish Eye View

6.2.1 Aliasing in ArgoUML

ArgoUML is a popular Java program for object-oriented modeling using UML. For example,
figure 5.3, depicting the class structure underlying Fox, was created using ArgoUML. This
program is open source and is available for free from http://argouml.tigris.org/. Figure
6.4 shows ArgoUML in action.

We ran ArgoUML and took snapshots of its memory at different stages during its run.
The first one was taken while it was just starting to load. The second one was taking when
it was about to finish loading. The third one was taken when it was running. The forth one
was taken after using it in a normal way for a little while, working on a class diagram and
a use case diagram. Finally, the fifth one was taken after we drove ArgoUML to the point
when it was editing a large model and was using a large amount of memory.

After obtaining the five heap snapshots described above, we loaded each of them, one
after another, using the queries of the following kind:

QLoadHeapSnapshot("~alex/Honours/Report/ArgoUML.StartingUp1.hprof");

For each of these snapshots, we wanted to find the percentage of objects having more than
one incoming reference, which is conveniently described in FQL as follows:

QPercentage(‘‘FIntegerProperty(
‘‘PNumberOfDynamicIncomingReferences’’,
> 1, FSnapshot())’’);

Which gives the percentage of aliased objects (i.e. those that have more than one incoming
reference). Figure 6.5 shows the results obtained using this query.

39

Figure 6.4: Screenshot of ArgoUML

40

Figure 6.5: Aliasing at later and later stages of running ArgoUML

41

Initial snapshot taken as Fox just started. 23,736
Before loading a file with snapshot but after 23,809
running for a little while.
After loading but still processing the snapshot. 231,618
Before destroying excess objects that are no 723,788
longer required by setting their pointers to null
and letting the garbage collector reclaim their memory.
After destroying and running for a little while. 99,733

Table 6.1: Five Snapshots of Fox Taken as it Processes Some Snapshot

We can see from the results that the percentage rose from 16%, up to 22% while at the
same time the total number of objects rose from 34,782 to 258,081. This means that the
number of aliased objects rose from 5,566 to 56,778. Every aliased object has a potential of
introducing an error into the program, and a large number of them should indicate that the
program’s behaviour can be hard to predict.

6.2.2 The Fox Destroying its Internal Data Structures

We obtained five dumps of Fox itself as it was working with the heap snapshot of the simple
HelloWorld program described above. Table 6.1 shows number of objects in each snapshot.
We can see how the extra data structures used during the construction of the ownership
tree vastly increase the size of Fox, while releasing memory used by no longer required data
structures deallocates most of the objects letting the number of them drop from over 700,000
to less than 100,000.

6.3 Power Laws in Object Graphs

Lets consider a large program like Forte, which is Sun’s Java Integrated Development En-
vironment (IDE) written in Java. We took a snapshot of it running in a normal way. The
snapshot had 359,666 objects as was discovered using the following query:

QCount("FSnapshot()");

Now, we consider the incoming references to each object. We use the following query to
obtain an average number of incoming references per object in the object graph:

QAverage("FSnapshot()", "PNumberOfIncomingReferences");

This gives us:

Averaged 1.74 across the objects passing the filter.

Thus, a typical object will have around 1 or 2 incoming references. Now, what if we look
at the number of objects that have just one incoming reference, the number of objects that
have exactly two incoming references, and so on. We can obtain this information by saving
the result of the following query into a comma-separated file and applying Microsoft Excel:

QProperties("PNumberOfIncomingReferences");

42

Figure 6.6: Incoming References in Forte

Figure 6.6 shows the graph of the number of objects having a particular number of incoming
references versus the number of incoming references. This distribution follows a Power Law
as shown below.

The Power Law, or Zipf’s Law, was first observed by George Kingsley Zipf, a Harvard
linguistics professor, in his study of the frequency of the words in English text. He observed
that in the distribution of words in any given novel: the nth most common word occurs about
1
n times as frequently as the most common word.

In particular, the first power law observation was that if we take any English novel, count
the number of times each word is used in it, and then sort them in order by putting the most
frequently occurring word first. The rth ranked word in the list will occur d

r times, where d
is independent of r, but may be different from novel to novel.

The second power law observation was about the population of cities in a large country,
like the United States. When we sort the cities in descending order by their population, the
rth largest city will have the population about d

r , where d is independent of r but may vary
from country to country 1.

Finally, a modern day example is the distribution of links to the web sites in the World
Wide Web. Recent measurements have shown that probability of the page having i links to
it from other pages around the web is:

Pr(indegree = i) ≈ c

iβ
(6.1)

To show that in Forte, the distribution of incoming references follows a power law, we
need to sort the objects in the order of the frequency of a particular number of incoming
references occurring. Then we need to plot on the log-log scale the frequency rank of the
number of incoming references occurrence versus the number of objects having such a rank.
If the resulting graph forms a line, it shows a linear dependency between the rank and the
number of objects of a particular rank. Figure 6.7 shows such a graph for five programs 2,

1This law usually doesn’t hold for countries with centralised city planning.
2Please observe that although the data is discrete we have plotted it as a continuous line. This follows the

tradition of power law papers.

43

Figure 6.7: Distribution of incoming references across the five snapshots

including Forte. We can clearly observe that even though they all have a different number of
objects inside the memory graph, the plots all lie on a line. Hence, we can conclude that the
distribution of incoming references in the object graphs conforms to the Power Law.

Further examination of static incoming references and outgoing reference, or sizes of
objects, in the object graph demonstrates two more Power Laws, as shown in figures 6.8 and
6.9.

The presence of a Power Law among the distributions of incoming and outgoing references
shows that the vast majority of objects have a very small number of either incoming or
outgoing references (exactly one, to be precise) and negligibly small number has more than
three or four either incoming or outgoing references. Thus, most objects are unique (one
incoming reference) and have size of around four bytes (one outgoing reference, which is a
32-bit address).

Finally, it would be interesting to look at whether there are any objects that have both a
large number of incoming and outgoing references. Again, with the help of Microsoft Excel
and Matlab, we were able to plot heat map representing the distribution of the number of
objects having a particular number of incoming and outgoing references. Figure 6.10 shows
such a heat map with darker colours corresponding to the smaller number of objects. We
can see that the graph is very close to the two axis and no objects have a large number of
both incoming and outgoing references. If we plot the two axis on a log-log scale, as shown in
figure 6.11, we can see more closely that the majority of objects tend to have a small number
of incoming references and a larger number of outgoing references and vice-versa 3.

3Note that the gap along the axis corresponds to the places where the LOG function is due to the approx-
imation errors in Matlab of values close to zero

44

Figure 6.8: Distribution of static incoming references across the five snapshots

Figure 6.9: Distribution of outgoing references across the five snapshots

45

Figure 6.10: Incoming versus outgoing references in Forte

Figure 6.11: LOG of incoming versus LOG of outgoing references in Forte

46

6.4 Corpus Analysis

In this section, we describe the results of applying Fox to a large number of heap snapshots
to examine a particular aspect of an object graph across a large number of programs. We
have accumulated a corpus of 33 programs, half of which came from the Purdue Benchmark
Suite used by Grothoff, Palsberg, and Vitek [7]. From these programs, we have obtained 52
heap snapshots across which we performed a number of measurements.

For each heap snapshot, we can calculate metrics such as the number of objects in the
object graph, the number of unique roots in the Java heap root set, and the number of
objects accessible by reference traversal from the root set (other objects are presumed to
be uncollected garbage). These numbers give an idea of the size of the program under
consideration. We found that a typical Java program in the corpus had around 60,000
objects allocated on the heap, about 1,800 of these were part of the Garbage Collector’s root
set (this includes static and global variables, metaobjects, and references from the Java stack)
and 3,000 (around 5% or less) were garbage, i.e. not accessible from the root set.

In the sections below we present corpus-wide results on uniqueness, ownership, and con-
finement, followed by two comprehensive tables summarising the experiments that we per-
formed upon the corpus.

6.4.1 Uniqueness

Uniqueness is the most basic type of aliasing control: a unique object is encapsulated within
its sole referring object [3]. We analysed the object graphs to determine the number of
non-unique objects, in particular, the percentage of objects with more than one incoming
reference. We found that on average only 13% of all objects had more than one object
pointing at them, or in other words had an alias. This means that the number of aliases
in the systems we looked at was not too high. But further investigation showed that the
percentage of aliased objects tends to increase as the program runs, stabilising at around
20%.

Given that the majority of objects are not aliased, we consider that it makes sense for
formal techniques to support uniqueness. There are, however, enough aliased objects that
uniqueness alone will be insufficient for managing aliasing within an object-oriented program-
ming style.

6.4.2 Object Ownership

Object ownership is in essence a generalisation of uniqueness [20] that underlies many more
sophisticated alias management schemes [17, 5, 4, 16]. An object a owns another object b if
all the paths from the root r to the object b go through a. In this case b is called the owner
of a. The implication of ownership is that no object outside the owner b is allowed to have a
reference to a. We posit a global root r through which all the objects in the root set of the
current heap snapshot can be accessed. Ownership allows us to structure an object graph
into an implicit ownership tree.

Our primary metric of object ownership is the average depth of an object in the ownership
tree, that is, the average numbers of levels of encapsulation around any object. In most
programs in the corpus, this was around 5 or 6; however some large programs had substantially
larger values (e.g. 817.25 under heavy load).

Given these figures, we hypothesised that large data structures such as linked lists could
have a very significant effect when calculating the average depth of the node in the ownership
tree: the average depth of a list node would be half the length of the list. To address this issue,
we decided to fold up the reference paths by counting chains of objects of same class (e.g.

47

LinkedList$Node) as having the length of 1. This gave us a less biased account, with the
average depth after folding being around 5.47 as opposed to 42.77 across all programs, with
the large outlying depths being greatly reduced (e.g. a simple linked list test program has
average depth of 142.37, average depth after folding of 4.21). The resulting ownership metric
does demonstrate, however, that there is a significant amount of object-based encapsulation
in Java programs.

We also calculated the average ownership tree depth per class; this gave us a finer-grained
picture of object ownership. As an example of the average depth from the root per class,
consider java.lang.Hashtable. Since most java.util.Hashtable instances should own
(approximately) one java.util.Hashtable$Entry[] array instance, we would expect the
average depth of the latter to be one greater than the former. The following sample of
Rabbit output for BlueJ confirms this hypothesis, and also implies the actual hashtable
entries are contained within the entry array.

Class java.util.Hashtable has 279 instances and on
average each instance node is 3.96 deep.
Class java.util.Hashtable$Entry[]; has 297 instances
and on average each instance node is 4.90 deep.
Class java.util.Hashtable$Entry has 3990 instances
and on average each instance node is 5.37 deep.

6.4.3 Confinement

The third aspect of encapsulation we analyse is object confinement, which is an instantaneous
approach to class confinement [1, 7]. If all the referrers to an object are in the same package
as the object’s class, we call the object strongly confined. If all the referrers are in the same
top level package, we call the object weakly confined: this is similar to the idea of hierarchical
packages in [1, 7]. If there are referrers from a different package, we call it not confined. For
example, if java.util.Vector object is pointed at by a hat.model.Snapshot object, then
it is not confined. If all the referrers of java.util.Vector are members of java.* but not
necessarily of java.util.* then it is weakly confined.

We have calculated a number of confinement metrics over the object graphs of the pro-
grams in our corpus, by considering all objects that refer to each object. We take an abductive
view of class confinement: if the class is deduced to be confined to its package at all times
during the program run [7], then all the instances of it should be confined.

Our measurements have shown that around 46% of objects were not confined, 21% were
weakly confined, and 33% were strongly confined. At first glance, these numbers are roughly
what static analysis by Grothoff, Palsberg, and Vitek [7] leads us to expect, even though we
are looking from a different perspective.

We further analysed confinement on a per-class basis, rather than per-object. The second
table in the end of this chapter gives the class confinement distribution. The first column,
called 0%, lists the number of classes that have no instances that are strongly confined, and
further columns list the number of classes that have a number of instances being strongly
confined falling into a corresponding decile. The column named 100% counts those that have
all their instances strongly confined.

One interesting feature of this table is that the 0% and 100% columns have by far the
largest values: all the instances of a class tend to have the same confinement. We had
hypothesised that there may be a significant fraction of the instances of some classes which
were “almost” confined (90%), but this did not appear to be the case.

We can see that the vast majority of classes with instances present in our heap snapshot
are not confined (88.48%). After comparing our results with the data obtained using the

48

static control flow analysis by Grothoff, Palsberg, and Vitek [7] we noticed that the majority
of classes that their tool detected as being confined at all times have not been instantiated in
any of our heap snapshots. Those that were instantiated, we confirmed were confined from
our perspective too.

49

6.4.4 General Collection of Metrics Across 52 Snapshots

Program NO NUR ART PMOIR AD ADF NRK NC WC SC TT

Aglets 23212 1588 22723 10.64% 7.44 6.63 2502 37.62% 29.95% 32.43% 20 sec.
AlgebraDB 3749 481 3506 10.58% 6.08 4.32 568 36.85% 26.64% 36.51% 4 sec.
ArgoUML Heavy 128332 3710 123061 20.45% 20.20 4.95 12119 52.06% 20.77% 27.17% 302 sec.
ArgoUML Initial 99969 3553 95174 19.01% 9.25 4.93 9609 52.32% 21.10% 26.58% 212 sec.
ArgoUML Normal 207801 4129 201584 19.81% 19.05 5.13 16426 53.67% 21.17% 25.16% 560 sec.
ArgoUML 211625 4262 205325 19.50% 12.84 5.08 17172 53.66% 20.95% 25.39% 591 sec.
Bloat 3951 373 3834 4.72% 5.01 4.86 408 41.26% 23.32% 35.42% 4 sec.
BlueJ Heavy 175674 3821 173267 12.16% 817.25 6.71 12201 44.33% 23.32% 32.34% 994 sec.
BlueJ Initial 35955 2435 34639 12.73% 6.30 5.59 3688 41.52% 28.53% 29.94% 39 sec.
BlueJ Normal 101848 3194 99693 13.42% 718.47 6.22 8718 44.26% 24.62% 31.12% 530 sec.
BlueJ 34944 2455 33630 12.37% 6.16 5.66 3445 41.17% 28.85% 29.98% 36 sec.
DINO Heavy 30419 2364 29378 13.08% 6.53 5.60 3602 39.45% 28.23% 32.31% 30 sec.
DINO Initial 28813 2252 27824 12.68% 11.42 5.68 3245 38.42% 29.26% 32.32% 29 sec.
DINO Normal 29718 2287 28693 12.79% 6.81 5.65 3425 38.66% 28.34% 33.00% 29 sec.
DINO 29235 2205 28246 13.16% 9.26 5.67 3210 37.83% 28.88% 33.29% 28 sec.
DYNO 29183 2554 27806 16.41% 43.11 4.75 3824 41.28% 25.75% 32.97% 40 sec.
Denim 74044 3641 69550 14.57% 9.88 6.08 6312 39.16% 27.20% 33.64% 135 sec.
Doubly Linked List 3744 310 3627 31.76% 4.65 4.21 331 25.06% 23.57% 51.36% 4 sec.
Forte 374450 7503 359666 19.17% 40.77 6.15 37523 46.85% 20.79% 32.36% 2154 sec.
GJ 3146 391 2961 8.14% 5.08 4.53 422 34.38% 30.87% 34.75% 3 sec.
HAT 258959 486 256290 15.64% 5.83 5.74 1205 26.88% 13.44% 59.67% 679 sec.
HelloWorld 2746 309 2633 5.73% 4.90 4.68 330 34.68% 32.59% 32.74% 3 sec.
HyperJ 3327 498 3194 6.64% 4.65 4.46 538 37.54% 31.65% 30.81% 3 sec.
JAX 33467 2600 32095 17.32% 5.67 4.83 5753 43.26% 21.60% 35.14% 39 sec.
JDI Heavy 34166 2404 33024 13.72% 12.44 5.76 3810 42.38% 27.02% 30.60% 36 sec.
JDI Initial 33123 2391 32119 13.45% 16.03 5.59 3734 39.95% 28.19% 31.86% 33 sec.
JDI Normal 52540 2359 51396 14.51% 9.00 6.06 4556 51.40% 21.42% 27.18% 54 sec.
JDI 35114 2431 34098 14.82% 59.21 5.51 3747 38.70% 28.85% 32.45% 43 sec.
Jinsight Heavy 172987 2437 172054 18.19% 18.10 4.31 29253 68.09% 18.94% 12.98% 356 sec.
Jinsight Initial 24190 1912 23317 10.15% 6.54 6.11 2410 38.41% 30.90% 30.69% 23 sec.
Jinsight Normal 101565 2363 100616 8.67% 9.05 5.01 7256 67.04% 16.08% 16.88% 123 sec.
Jinsight 63053 2267 62136 18.34% 15.92 4.82 10376 59.42% 20.81% 19.77% 80 sec.
JTB 3261 434 3128 5.66% 4.63 4.44 464 36.41% 28.55% 35.04% 3 sec.
Jess 10685 580 10487 8.71% 6.13 6.01 1082 45.04% 13.72% 41.24% 8 sec.
Jython 27458 1406 26739 11.69% 8.51 8.26 2573 35.35% 16.23% 48.41% 24 sec.
Kacheck/J Heavy 120286 425 119979 14.09% 10.54 5.53 10837 31.52% 10.01% 58.47% 121 sec.
Kacheck/J Initial 8043 392 7910 3.01% 8.50 7.76 437 27.02% 42.97% 30.01% 7 sec.
Kacheck/J Normal 24345 426 24058 10.97% 6.73 6.05 2084 29.50% 20.12% 50.38% 19 sec.
Kacheck/J 9372 413 9169 5.98% 7.88 7.14 743 28.90% 38.08% 33.01% 8 sec.
Kawa 9685 805 9423 11.80% 4.81 4.14 1148 48.64% 10.84% 40.53% 8 sec.
Linked List 3744 310 3627 4.16% 142.37 4.21 331 25.06% 23.57% 51.36% 6 sec.
Log File System 27111 2123 26224 11.84% 23.85 5.83 2900 39.64% 29.47% 30.90% 43 sec.
OVM 9372 413 9169 5.98% 7.88 7.14 743 28.90% 38.08% 33.01% 8 sec.
Ozone 16031 660 15474 11.65% 7.05 6.42 2037 33.48% 31.09% 35.43% 14 sec.
SableCC 21486 515 20989 16.68% 5.73 4.67 1561 57.88% 11.97% 30.15% 16 sec.
Satin 80415 1922 77055 18.52% 8.83 4.40 13152 48.47% 23.55% 27.99% 174 sec.
Schroeder 101659 1432 36371 17.55% 9.04 5.29 3221 41.75% 27.28% 30.98% 891 sec.
Skyline 2106 192 2071 5.12% 4.87 4.62 206 34.09% 33.61% 32.30% 2 sec.
Soot 11588 583 11309 16.82% 4.90 4.75 1931 46.53% 17.28% 36.19% 10 sec.
SwingSet 49343 2889 47855 16.64% 7.35 5.48 5327 46.14% 20.63% 33.23% 57 sec.
Toba 2920 328 2828 6.30% 5.13 4.83 377 32.32% 34.19% 33.49% 3 sec.
Tomcat 34688 1025 33873 9.38% 6.41 6.07 2824 39.08% 26.10% 34.81% 32 sec.

Across All 58050.9 1793.04 55286.42 12.82% 42.77 5.47 5301.85 46.03% 21.29% 32.68% 167 sec.

1. NO - Number of Objects in the Object Graph
2. NUR - Number of Unique Roots in the Heap Root Set
3. ART - Number of Objects Accessible by Reference Traversal from the Root Set
4. PMOIR - Percentage with MORE THAN ONE Incoming Reference
5. AD - Average Depth from the Root in the Tree
6. ADF - Average Depth from the Root in the Tree After Folding
7. NRK - Number of Root Kids in the Resulting Ownership Tree
8. NC - Percentage not Confined
9. WC - Percentage Weakly (but not Strongly) Confined
10. SC - Percentage Strongly Confined
11. TT - Time Taken to Analyse a Given Heap Snapshot 4

4The Machine used was a Sun Ultra80-450 with 4x450MHz UltraSPARC II, 4MB Cache and 2048MB
RAM.

50

6.4.5 Class Confinement Metrics Across 52 Snapshots

Program 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% 100% TNC

Aglets 5729 7 6 3 5 7 0 2 0 6 4 757 6526
AlgebraDB 1007 1 1 0 1 1 0 2 0 1 1 272 1287
ArgoUML Heavy 9171 24 3 8 15 15 3 10 4 7 8 1620 10888
ArgoUML Initial 8763 22 5 6 13 14 3 10 4 7 5 1551 10403
ArgoUML Normal 9895 25 3 10 14 14 2 10 3 7 9 1629 11621
ArgoUML 9975 23 8 7 14 14 2 11 4 7 8 1677 11750
Bloat 1313 4 1 1 2 3 0 0 0 2 0 244 1570
BlueJ Heavy 18908 28 10 8 17 17 3 10 8 9 14 1847 20879
BlueJ Initial 7528 18 4 7 12 16 4 5 6 2 6 1264 8872
BlueJ Normal 17382 25 6 7 12 17 3 13 9 8 12 1595 19089
BlueJ 7364 17 4 6 12 13 4 5 6 2 6 1263 8702
DINO Heavy 5876 16 3 5 11 12 3 7 4 4 7 1306 7254
DINO Initial 5709 14 3 3 10 15 4 5 4 3 7 1271 7048
DINO Normal 5817 14 3 4 11 13 3 5 5 3 7 1291 7176
DINO 5732 14 3 3 9 18 2 6 5 3 7 1251 7053
DYNO 5277 15 7 5 11 14 2 7 5 1 8 1429 6781
Denim 10529 21 10 5 10 14 3 11 6 6 9 1731 12355
Doubly Linked List 863 2 0 0 1 3 0 0 0 1 1 213 1084
Forte 48546 53 18 12 27 38 10 11 7 15 18 1831 50586
GJ 939 2 1 3 0 1 0 1 0 1 0 232 1180
HAT 10298 5 1 1 2 3 1 1 0 0 1 324 10637
HelloWorld 864 2 0 0 2 2 0 0 0 1 0 212 1083
HyperJ 1155 1 3 0 0 3 0 0 1 2 0 255 1420
JAX 6813 13 10 5 9 12 4 6 10 3 3 1415 8303
JDI Heavy 6830 17 6 5 14 13 3 6 5 3 6 1333 8241
JDI Initial 5906 18 4 4 13 10 2 9 2 2 8 1345 7323
JDI Normal 9283 18 6 5 14 16 2 6 5 3 6 1322 10686
JDI 5918 18 7 4 9 9 2 8 4 2 7 1371 7359
Jinsight Heavy 11707 16 10 3 9 11 3 3 3 5 5 1081 12856
Jinsight Initial 5566 10 6 2 9 11 1 3 2 2 6 997 6615
Jinsight Normal 10710 17 6 5 11 12 3 2 2 3 4 1118 11893
Jinsight 7676 16 9 3 9 13 2 5 2 4 5 1078 8822
JTB 1051 1 2 0 0 2 0 0 0 2 0 255 1313
Jess 1815 5 0 2 0 2 0 2 4 0 4 350 2184
Jython 4128 5 1 0 0 5 1 1 2 1 8 292 4444
Kacheck/J Heavy 10180 6 1 3 1 0 0 0 0 0 6 467 10664
Kacheck/J Initial 1779 5 0 1 0 2 0 0 0 0 1 257 2045
Kacheck/J Normal 3414 6 1 3 0 1 0 0 0 0 6 468 3899
Kacheck/J 2281 6 1 0 2 1 0 0 0 0 1 432 2724
Kawa 2243 3 2 4 2 2 0 2 4 2 5 301 2570
Linked List 863 2 0 0 1 3 0 0 0 1 1 213 1084
Log File System 5517 12 5 4 11 11 1 5 3 4 8 1168 6749
OVM 2281 6 1 0 2 1 0 0 0 0 1 432 2724
Ozone 3787 6 2 1 4 6 0 3 1 1 2 395 4208
SableCC 2916 8 1 1 1 3 2 2 0 2 4 439 3379
Satin 7088 10 9 4 1 5 0 4 4 1 9 854 7989
Schroeder 6912 11 10 4 16 11 4 8 4 9 8 255 7252
Skyline 700 1 1 0 0 1 0 0 0 0 0 122 825
Soot 3471 5 3 2 1 5 0 4 0 1 2 317 3811
SwingSet 7179 16 10 10 14 13 2 6 1 3 7 1484 8745
Toba 833 4 1 3 1 1 0 1 0 0 0 213 1057
Tomcat 7771 10 8 3 3 11 0 6 5 1 4 482 8304

Total 345258 624 226 185 368 460 84 224 144 153 265 45321 393312
Percentage 87.78% 0.16% 0.06% 0.05% 0.09% 0.12% 0.02% 0.06% 0.04% 0.04% 0.07% 11.52% 100.00%

Strong/Weak/Not Confined Distribution Across the Snapshots

51

Chapter 7

Conclusion

In this report we have presented Fox, a tool to study aliasing in object graphs of Java
programs. We described the query language, called FQL, that lies at its foundation. Finally
we presented the results of our studies of object graphs that utilised Fox and FQL. The tool
proved very useful and we plan to continue its application in the future work, as described
below.

7.1 Contributions

We provided the aliasing research community with a new tool that can be used for static
heap analysis. We developed a useful query language that can be extended as further studies
are performed by us and other people. Finally, we performed a large number of experiments
as presented in this report that directly involved using Fox.
The results described in this report included the demonstration of the Power Law depen-

dency among the references in object graphs, empirical confirmation of the large amount of
aliasing in Java programs, and a closer examination of ownership and confinement among
a large number of Java programs. In particular, we found that on average objects were
five layers deep within an object ownership hierarchy and that of all objects one third were
strongly confined according to our instantaneous confinement definition. One of the contri-
butions to the metrics themselves was our development and use of the concept of folding in
the ownership tree which demonstrated a more sensible measure of object’s encapsulation.
Fox and our corpus of heap snapshots are available at: www.mcs.vuw.ac.nz/~alex/fox.

7.2 Future Work

In the future, we plan to concentrate on exploration of different interesting properties of
ownership, trying to answer questions like: ”are there objects that only have one pointer
from outside their ownership shadow?”, or ”are there objects that have a large number of
incoming references, and only one child that has one incoming reference but a large number
of outgoing references?”. We plan to examine the formal research done in the area of aliasing
and try and apply our tool to see the extent of applicability of formal results.
The work described above, should help us improve and develop further the query language.

We have two different ways to go from where we are now: we can either extend the FQL
and make its syntax nicer and more compatible with Object Constraint Language (OCL),
or we can decide to avoid doing storage of heap snapshots ourselves and use Fox to convert
memory snapshots into appropriate database, which we can then query extensively using
standard Structured Query Language (SQL).

52

One of the future obvious extensions to Fox itself would be duplication of some of the
control-related queries in the user interface to simplify the task of a user using Fox for a
detailed analysis of a single heap snapshot only.
Once the tool matures, we plan to make it available on open source basis to all the researchers

worldwide in the hope that it will advance the study of aliasing using static analysis of
complete heap snapshots.

53

54

Bibliography

[1] Boris Bokowski and Jan Vitek. Confined types. In Proceedings of OOPSLA’99, ACM
Press, 1999.

[2] Grady Booch. Object-oriented design with applications. The Benjamin/Cummings
Publishing Company, 1991.

[3] John Boyland, James Noble, and William Retert. Capabilities for sharing. In Proceedings
of ECOOP’01, Springer-Verlag, 2001.

[4] David Clarke, James Noble, and John Potter. Simple ownership types for object con-
tainment. In Proceedings of ECOOP’01, Springer-Verlag, 2001.

[5] David Clarke, John Potter, and James Noble. Ownership types for flexible aliasing
protection. In Proceedings of OOPSLA’98, ACM Press, 1998.

[6] Bill Foote. Java Heap Analysis Tool. Available at: http://java.sun.com/people/
billf/heap/index.html

[7] Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects with confined
types. In Proceedings of OOPSLA’01, ACM Press, 2001

[8] D. E. Harms and B. Weide. Copying and swapping: influences on the design of reusable
software components. In IEEE Transactions of Software Engineering, 17(5): 424-435.

[9] Trent Hill, James Noble, John Potter. Scalable visualisations with ownership trees. In
Proceedings of TOOLS Pacific 2000, Sydney, Australia, IEEE CS Press, 2000.

[10] C.A.R. Hoare and He Jifeng. A trace model for pointers and objects. In Proceedings of
ECOOP’99, 1999.

[11] Chanika Hobatr and Brian A. Malloy. The design of an OCL query-based debugger for
C++. In Proceedings of 16th ACM SAC2001 Symposium on Applied Computing, 2001.

[12] IBM AlphaWorks. Jinsight. Available at: http://www.alphaworks.ibm.com/tech/jinsight/

[13] James L. Johnson. Database: models, languages, design. Oxford University Press, 1997.

[14] Raimondas Lencevicius. Advanced debugging methods. Kluwer Academic Publishers,
August 2000.

[15] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in
a flowgraph. In ACM Transactions on Programming Languages and Systems, 1(1):121–
141, July 1979.

55

[16] P. Muller and A. Poetzsch-Heffter. Universes: A type system for controlling representa-
tion exposure. In A. Poetzsch-Heffer and J. Meyer editors, Programming Languages and
Fundamentals of Programming, Fernuniversitat Hagen, 1999.

[17] James Noble, John Potter, Jan Vitek. Flexible alias protection. In Proceedings of
ECOOP’98, 1998.

[18] Open Virtual Machine for Java. Available at: http://www.ovmj.org/

[19] Alex Potanin and James Noble. Checking ownership and confinement properties. In
Formal Techniques for Java-like Programs Workshop at ECOOP’02, 2002.

[20] John Potter, James Noble, and David Clarke. The ins and outs of objects. In Proceedings
of Australian Software Engineering Conference (ASWEC), IEEE CS Press, 1998.

[21] Ehud Y. Shapiro. Algorithmic program debugging. The MIT Press, 1983.

[22] G. Santucci, P. A. Sottile. Query by diagram: a visual environment for querying
databases. In Software Practice and Experience, Vol. 23, No. 3, 1993.

[23] Secure Internet Programming Group. Available at:
http://www.cs.princeton.edu/sip/news/april29.html

[24] Sun Microsystems. Java Virtual Machine Profiler Interface. Available at: http://
java.sun.com/j2se/1.4/docs/guide/jvmpi/index.html

[25] VisualBeans.Com. FishEye Bean. Available at: http://www.visualbeans.com/FishEye/

[26] R. Wirfs-Brock and B. Wilkerson. Object-oriented design: a responsibility-driven ap-
proach. In Proceedings of OOPSLA’89, 1989.

[27] Andreas Zeller. Delta debugging. Available at: http://www.st.cs.uni-sb.de/dd/

[28] Andreas Zeller. Isolating cause-effect chains from computer programs. In Proceedings
of ACM SIGSOFT 10th International Symposium on the Foundations of Software En-
gineering (FSE-10), 2002.

[29] T. Zimmermann, A. Zeller. Visualizing memory graphs. In Proceedings of the Dagstuhl
Seminar 01211 “Software Visualization”, Lecture Notes in Computer Science, Dagstuhl,
Germany, Springer-Verlag, May 2001.

[30] M. Zloof. Query-by-example: a database language. In IBM Systems Journal, 16(4):324–
343, 1977.

56

