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Abstract

In order to evaluate software performance and find
regressions, many developers use automated perfor-
mance tests. However, the test results often contain
a certain amount of noise that is not caused by ac-
tual performance changes in the programs. They are
instead caused by external factors like operating sys-
tem decisions or unexpected non-determinisms inside
the programs. This makes interpreting the test results
difficult since results that differ from previous results
cannot easily be attributed to either genuine changes
or noise. In this paper we present an analysis of a sub-
set of the various factors that are likely to contribute
to this noise using the Mozilla Firefox browser as an
example. In addition we present a statistical tech-
nique for identifying outliers in Mozilla’s automatic
testing framework. Our results show that a significant
amount of noise is caused by memory randomization
and other external factors, that there is variance in
Firefox internals that does not seem to be correlated
with test result variance, and that our suggested sta-
tistical forecasting technique can give more reliable
detection of genuine performance changes than the
one currently in use by Mozilla.

Keywords: performance variance; performance evalu-
ation; automated testing

1 Introduction

Performance is an important aspect of almost every
field of computer science, be it development of effi-
cient algorithms, compiler optimizations, or processor
speed-ups via ever smaller transistors. This is appar-
ent even in everyday computer usage – no one likes
using sluggish programs. But the impact of perfor-
mance changes can be more far-reaching than that:
it can enable novel applications of a program that
would not have been possible without significant per-
formance gains.

In the context of browsers this is very visible with
the proliferation of so-called “web apps” in recent
years. These websites make heavy use of JavaScript
to create a user experience similar to local applica-
tions, which creates an obvious incentive for browser
vendors to optimize their JavaScript execution speed
to stay ahead of the competition.
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A situation like that poses a problem for develop-
ers, though. Speed is not the only important aspect of
a browser; features like security, extensibility and sup-
port for new web standards are at least as important.
But more code can negatively impact the speed of
an application: start-up becomes slower due to more
data that needs to be loaded, the number of condi-
tional tests increases, and increasingly complex code
can make it less than obvious if a simple change might
have a serious performance impact due to unforeseen
side effects.

Automated tests help with this balance by alert-
ing developers of unintended consequences of their
code changes. For example, a new feature might have
the unintended consequence of slowing certain oper-
ations down, and based on this new information the
developers can then decide on how to proceed. How-
ever, in order to not create a large number of false
positives whose investigation creates more problems
than it solves the tests need to be reliable. But even
though computers are deterministic at heart, there
are several factors that can make higher-level opera-
tions non-deterministic enough to have a significant
impact on these performance measurements, making
the detection of genuine changes very challenging.

1.1 Contributions

This paper tries to determine what the most signifi-
cant factors are that cause non-determinism and thus
variation in the performance measurements, and how
they can be reduced as much as possible, with the ul-
timate goal of being able to distinguish between noise
and real changes for new performance test results.
Mozilla Firefox is used as a case study since as an
Open Source project it can be studied in-depth. This
will hopefully significantly improve the value of these
measurements and enable developers to concentrate
on real regressions instead of wasting time on non-
existent ones.

In concrete terms, we present:

• An analysis of factors that are outside of the con-
trol, i.e. external to the program of interest, and
how it impacts the performance variance, with
suggestions on how to minimize these factors,

• an analysis of some of the internal workings of
Firefox in particular and their relationship with
performance variance, and

• a statistical technique that would allow auto-
mated test analyses to better evaluate whether
there has been a genuine change in performance
recently, i.e. one that has not been caused by
noise.



Table 1: The various performance tests employed by
Mozilla

Test name Test subject Unit

a11y Accessibility Milliseconds
dromaeo basics JavaScript Runs/second
dromaeo css JS/CSS manipulation Runs/second
dromaeo dom JS/DOM manipula-

tion
Runs/second

dromaeo jslib JS libraries Runs/second
dromaeo sunspider SunSpider benchmark

through Dromaeo
suite

Runs/second

dromaeo v8 V8 suite benchmark
Dromaeo suite

Runs/second

tdhtml JS DOM animation Milliseconds
tgfx Graphics operations Milliseconds
tp dist Page loading Milliseconds
tp dist shutdown Shutdown time after

page loading
Milliseconds

tsspider SunSpider benchmark Milliseconds
tsvg SVG rendering Milliseconds
tsvg opacity Transparent SVG ren-

dering
Milliseconds

ts Startup time Milliseconds
ts shutdown Shutdown time Milliseconds
v8 V8 benchmark Milliseconds

More details and complete plots for all of our ex-
periments can be found in the accompanying technical
report (Larres et al. 2012).

1.2 Outline

The rest of this paper is organized as follows. Section 2
gives an overview of the problem using an example
produced with the official Firefox test framework. Sec-
tion 3 looks at external factors that can influence the
performance variance like multitasking and hard drive
access. Section 4 looks at what is happening inside of
Firefox while a test is running and how these internal
factors might have an effect on performance variance.
Section 5 presents a statistical technique that im-
proves on the current capability of detecting genuine
performance changes that are not caused by noise.
Section 6 gives an overview of related work done in
this area. Finally, Section 7 summarizes our results
and gives some suggestions for future work.

2 Background

2.1 The Talos Test Suite

The Talos test suite is a collection of 17 different tests
that evaluate the performance of various aspects of
Firefox. A list of those tests is given in Table 1. The
purpose of this test suite is to evaluate the perfor-
mance of a specific Firefox build. This is done as part
of a process of Continuous Integration (Fowler 2006),
where newly committed code gets immediately com-
piled and tested to find problems as early as possible.

The focus of this work is on the Talos performance
evaluation part of the continuous integration process.
We will also mostly focus on variance in unchanging
code and the detection of regressions in order to limit
the scope to a manageable degree (O’Callahan 2010).

2.2 An Illustrative Example

Figure 1 illustrates some example data from the
tp dist part of the test suite over most of the year
2010. This test loads a number of web pages from the
local disk and averages over the rendering times. We
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Figure 1: Page load speed tp dist example se-
quence with data taken from graphs.mozilla.org

can see two distinct change patterns in the graph: two
big drops in June and August, and seemingly random
changes the rest of the time. Since the second drop
causes the rest of the results to stay around that level,
it suggests a code optimization that led to an overall
better performance. The earlier drop of similar mag-
nitude could be a previous application of the opti-
mization that exposed some bugs and was therefore
reverted until the bugs were fixed.

Unfortunately we do not have an explanation for
the other changes that is as simple as that. But could
we apply the same heuristic that lets us explain the
big changes – seeing it “sticking out” of the general
trend – and use it in a more statistically sound way
to try to explain the other results? To some degree,
yes.

The exact details of the best way to do this will
be explained in Section 5, but let us first have a very
simple look at how we could put a number on the
variance of a test suite series. We will do this by run-
ning a base line series using a standard setup without
any special optimizations.

2.3 Statistics Preliminaries

The Talos suite already employs a few techniques that
are meant to mitigate the effect of random variance
on the test results. One of the most important is that
each test is run 5-20 times, depending on the test, and
the results are averaged. A statistical optimization
that is already being done here is that the maximum
result of these repetitions is discarded before the av-
erage is calculated. Since in almost all cases this is the
first result, which includes the time of the file being
fetched from the hard disk, it serves as a simple case
of steady-state analysis where only the results using
the cache – which has relatively stable access times –
are going to be used.

For our statistical significance analyses we will use
the common significance level of 0.05.

2.4 The Base Line Test

2.4.1 Experimental Setup

For this and all the following experiments in this
paper we used a Dell Optiplex 780 computer with
an Intel Core 2 Duo 3.0 GHz processor and 4 GB
of RAM running Ubuntu Linux 10.04 with Kernel
2.6.32. To start with we ran the whole test suite 30
times back-to-back as a series using the same exe-
cutable in an idle GNOME desktop, with 30 being
a compromise between reasonable test run times and
possible steady-state detection. The only adjustments
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Figure 2: tp dist results of 30 runs
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Figure 3: a11y results of 30 runs

that we made were two techniques used on the official
Talos machines1, namely replacing the /dev/random
device with /dev/urandom and disabling CPU fre-
quency scaling.

In the following we use the term run to refer to
a single execution of the whole or part of the Talos
test suite and series to refer to a sequence of runs,
consisting of 30 single runs unless noted otherwise.

2.4.2 Results

Figure 2 shows the results of the tp dist page load-
ing test, and Figure 3 shows the results of the a11y
accessibility test – both serve as good examples for
the complete test suite results. Here we have – as ex-
pected – no drastic outliers, but we do still have a
non-trivial amount of variance.

Table 2 shows a few properties of the results for the
complete test suite. As a typical statistical measure
we included the standard deviation and the coefficient
of variation (CoV) for easier comparison between dif-
ferent tests. The standard deviation shows us that, in-
deed, the variation for some of the tests is quite high.
The general goal is that we want to be able to de-
tect regressions that are as small as 0.5 % (O’Callahan
2010), so it should be possible to analyse the results
in a way so that we can distinguish between genuine
changes and noise at this level of precision.

We first look at the maximum difference between
all of the values in our series taken as a percentage of
the mean, similar to Georges et al. (2007), Mytkow-
icz et al. (2009) and Alameldeen & Wood (2003). In
other words we take the difference between the high-
est and the lowest value in our series and divide it by
the mean. If a new result would increase this value,
it would be assumed to not be noise. Looking at the
table we can see that almost none of the tests are any-
where near our desired accuracy, so using this method
would give us no useful information. If we measure
the difference from the mean instead of between the
highest and lowest result we can see that the values

1https://wiki.mozilla.org/ReferencePlatforms/Test/
FedoraLinux

Table 2: Results of the base line test

Max diff (%)

Test name StdDev CoV1 Absolute2 To mean3

a11y 2.23 0.69 3.38 2.08
dromaeo basics 4.41 0.53 2.57 1.62
dromaeo css 11.36 0.30 1.39 0.88
dromaeo dom 1.02 0.41 1.99 1.14
dromaeo jslib 0.53 0.30 1.19 0.60
dromaeo sunspider 5.65 0.54 2.09 1.16
dromaeo v8 2.02 0.86 3.03 1.77
tdhtml 0.94 0.33 1.31 0.73
tgfx 0.80 5.68 25.60 18.88
tp dist 1.77 1.16 4.42 3.30
tp dist shutdown 27.09 5.14 16.51 8.72
ts 2.27 0.59 2.45 1.66
ts shutdown 7.28 2.00 6.88 3.44
tsspider 0.11 1.15 4.04 2.57
tsvg 1.43 0.04 0.17 0.10
tsvg opacity 0.62 0.74 3.56 2.02
v8 0.11 1.42 4.31 3.59

1Coefficient of variation: StdDev
mean

2Difference between highest and lowest values: (highest −
lowest)/mean ∗ 100
3max(highest − mean,mean − lowest)/mean ∗ 100

obviously do look better, but they are still too far
away from being actually useful. An additional prob-
lem with these techniques is that they have problems
with significant genuine changes in the performance
like the ones in Figure 1, which are usually much
larger than the variance caused by noise.

Section 5 will pursue more sophisticated methods
to try to address these concerns. However, even with
better statistical methods it will be challenging to
reach our goal – the noise is simply too much. There-
fore in the next two sections we will first have a look
at the physical causes for the noise and try to reduce
the noise itself as much as possible before we continue
with our statistical analysis.

An important thing to note here is that it is clearly
impossible to account for all possible environments
that an application may be run in, but that even an
artificial environment like ours should still be effective
in uncovering the most common issues.

3 External Factors: Hardware, multitasking
and other issues

3.1 Overview of External Factors

3.1.1 Multitasking

Multitasking allows several programs to be executed
nearly simultaneously, and the kernel tries to sched-
ule them in a way so that the reality of them actually
running sequentially (at least on one CPU) is hid-
den from the user. The consequence of this is that
the more programs are running, the less CPU time is
available for each one. So the amount of work that can
be achieved by any one program in a given amount
of real (wall clock) time depends on how many other
programs are running. This means that care should
be takes as to which programs are active during tests,
and also that wall clock time is not very useful for pre-
cise measurements. The actual CPU time is of more
interest to us. In addition the scheduling may differ
from one run to the next, potentially leading to more
variance.



3.1.2 Multi-processor systems

In recent years systems with more than one processor,
or at least more than one processor core, have become
commonplace. This has both good and bad effects on
our testing scenario. The upside of it is that processes
that use kernel-level threads (as Firefox does) can now
be split onto different processors, with in the extreme
case only one process or thread running exclusively on
one CPU. This prevents interference from other pro-
cesses as described above. “Spreading out” a process
in this way is possible since typical multi-processor
desktop systems normally use a shared-memory ar-
chitecture. This allows threads, which all share the
same address space, to run on different processors.
The only thing that will not get shared in this case
is CPU-local caches – which creates a problem for us
if a thread gets moved to a different processor, re-
quiring the data to be fetched from the main memory
again. So if the operating systems is trying to bal-
ance processes and threads globally and thus moves
threads from our Firefox process around this could
potentially lead to additional variance.

3.1.3 Address-space layout randomization

Address-space layout randomization (ASLR)
(Shacham et al. 2004) is a technique to prevent
exploiting buffer overflows by randomizing the
address-space layout of a program for each run. This
way an attacker cannot know in advance what data
structures will lie at the addresses after a specific
buffer, making overwriting them with data that
facilitates an attack much harder.

Unfortunately, for our purposes this normally very
useful technique can do more harm than good. For ex-
ample, the randomization can lead to data structures
being aligned differently in memory during different
executions of the same program, introducing variance
as observed by Mytkowicz et al. (2009) and Gu et al.
(2004).

Additionally, in Non-Uniform Memory Access
(NUMA) architectures the available memory is di-
vided up and directly attached to the processors, with
the possibility of accessing another processor’s mem-
ory through an interconnect. This decreases the time
it takes a processor to access its own memory, but in-
creases the time to the rest of the memory. So depend-
ing on where the requested memory region is located
the access time can vary. In addition the randomiza-
tion makes prefetching virtually impossible, increas-
ing page faults and cache misses (Drepper 2007).

3.1.4 Hard disk access

Running Firefox with the Talos test suite involves ac-
cessing the hard disk at two important points: when
loading the program and the files needed for the tests,
and when writing the results to log files. Hard disk ac-
cess is however both significantly slower than RAM
access and much more prone to variance. This is
mainly for two reasons: (1) hard disks have to be
accessed sequentially, which makes the actual posi-
tion of data on them much more important than for
random-access memory and can lead to significant
seek times, and (2) hard drives can be put into a
suspended mode that they then have to be woken up
from, which can take up to several seconds.

3.1.5 Other factors

Other factors that can play a role are the UNIX en-
vironment size and linking order of the program as

investigated by Mytkowicz et al. (2009). In our case
we worked on the same executables using the same
environment and so those effects have not been inves-
tigated further.

3.2 Experimental setup

Our experimental setup was designed to mitigate the
effect of the issues mentioned in the previous section
on the performance variance. The goal was to evaluate
how much of the variance observed in the performance
tests was actually caused by those external factors as
compared to internal ones.

The following list details the way the setup of our
test machine was changed for our experiments.

• Every process that was not absolutely needed,
including network, was terminated.

• Address-space randomization was disabled in the
kernel.

• The Firefox process was exclusively bound to one
of our two CPUs, and all other processes to the
second one.

• The test suite and the Firefox binary were copied
to a RAM disk and run from there. The results
and log files were also written to the RAM disk.

Using this setup we ran a test series again and
compared the results with our previous results from
Section 2.4.2. In our first experiment we tested all
of these changes at the same time instead of each
individually to see how big the cumulative effect is.

3.3 Results

A comparison of the results of our initial tests and the
external optimization approach are shown in Table 3.
Overall the results show a clear improvement, most
of the performance differences have been significantly
reduced. For example, the maximum difference to the
mean for the a11y test went down from 2.08 % to
0.46 % and for tsspider it went down from 2.57 % to
1.34 %.

In order to give a better visual impression of how
the results differ Figure 4 shows a violin plot of some
of their density functions, normalized to the percent-
age of their means, with red dots indicating outliers,
the white bar the inter-quartile range similar to box-
plots and the green dot the median.

Looking at the plots we can see that in the cases
of for example tgfx and tp dist the modifications
got rid of all the extreme outliers. The curious shape
of the v8 plot means that all of the results from the
test had the same value, our ideal outcome for all of
the tests. Also even though the result table indicates
that the max diff metric for ts and tsvg opacity
increased, the plots show that this is caused by a few
extreme outliers and that the rest of the results seem
to have gotten better.

3.3.1 The Levene Test

In order to test whether the perceived differences in
variance between our setups are actually statistically
significant, we made use of the Levene test for the
equality of variances (Levene 1960, Brown & Forsythe
1974). This test determines whether the null hypoth-
esis of the variances being the same can be rejected
or not – similar to the ANOVA test which does the
same thing for means. This test is robust against non-
normality of the distributions, so even though not all



Table 3: Results after all external optimizations

StdDev CoV Max diff (%)

Test name nomod cumul nomod cumul nomod cumul Levene p-value

a11y 2.23 0.54 0.69 0.17 2.08 0.46 < 0.001***
dromaeo basics 4.41 2.39 0.53 0.29 1.62 1.01 0.028*
dromaeo css 11.36 7.95 0.30 0.21 0.88 0.46 0.314
dromaeo dom 1.02 1.00 0.41 0.40 1.14 0.74 0.562
dromaeo jslib 0.53 0.44 0.30 0.25 0.60 0.79 0.280
dromaeo sunspider 5.65 3.77 0.54 0.36 1.16 0.74 0.086
dromaeo v8 2.02 1.20 0.86 0.52 1.77 0.81 0.075
tdhtml 0.94 0.30 0.33 0.10 0.73 0.39 < 0.001***
tgfx 0.80 0.14 5.68 1.37 18.88 2.93 < 0.001***
tp dist 1.77 0.19 1.16 0.14 3.30 0.35 0.002**
tp dist shutdown 27.09 8.59 5.14 1.75 8.72 5.41 < 0.001***
ts 2.27 2.46 0.59 0.74 1.66 3.26 0.282
ts shutdown 7.28 3.75 2.00 1.19 3.44 2.89 < 0.001***
tsspider 0.11 0.05 1.15 0.64 2.57 1.34 < 0.001***
tsvg 1.43 0.68 0.04 0.02 0.10 0.05 0.006**
tsvg opacity 0.62 1.11 0.74 1.35 2.02 6.82 0.639
v8 0.11 0.00 1.42 0.00 3.59 0.00 0.008**

nomod: unmodified setup; cumul: cumulative modifications; * p ≤ 0.05, ** p < 0.01, *** p < 0.001

of the tests follow a normal distribution the test will
still be valid.

Table 3 shows the resulting p-value after applying
the Levene test to all of our test results. The results
confirm our initial observations: 10 out of 17 tests
have a very significant difference, except for most of
the dromaeo tests and the ts and tsvg opacity tests.
The dromaeo tests are especially interesting in that
most of them are a good way away from a statisti-
cally significant difference, and even the one test that
does have one is less significant than all the other pos-
itive tests. It seems as if the framework used in those
tests is less susceptible to external influences than the
other, stand-alone tests.

3.4 Isolated Parameter Tests

In order to determine which of our modifications had
the most effect on the tests and whether maybe some
modifications have a larger impact on their own we
also created four setups where only one of our modifi-
cations was in use: (1) disabling all unnecessary pro-
cesses (plain), (2) disabling address-space random-
ization (norand), (3) exclusive CPU use (exclcpu)
and (4) usage of a RAM disk (ramfs).

Table 4 shows the results of comparing the iso-
lated parameters to the unmodified version using the
Levene test. We can see that the modification that
led to the highest number of significant differences
is the deactivation of memory randomization. Espe-
cially in the v8 test it was the only modification
that had any effect at all – it was solely responsi-
ble for the test always resulting in the same value.
Equally interesting is that this modification also
causes two of the dromaeo tests to become significant
that were not in the cumulative case, dromaeo jslib
and dromaeo sunspider. That suggest that the other
modifications seem to “muddle” the effect somehow.
Also, in the dromaeo basics case the disabled mem-
ory randomization is the only modification that got
rid of all the outliers. Interesting to note is that in the
tgfx and tp dist cases all of the modifications have
an influence on the outliers.

3.5 Conclusions

Our modified test setup was a definite improvement
on the default state without any modifications. Even
though the results did not quite match our goals, they

Table 4: Levene p-values for isolated modifications,
compared to the unmodified setup

Test plain norand exclcpu ramfs

a11y 0.141 0.831 0.072 0.419
dromaeo basics 0.617 0.001** 0.199 0.984
dromaeo css 0.357 0.156 0.926 0.347
dromaeo dom 0.226 0.112 0.921 0.316
dromaeo jslib 0.316 0.020* 0.069 0.212
dromaeo sunspider 0.915 0.028* 0.401 0.743
dromaeo v8 0.205 0.443 0.995 0.555
tdhtml 0.626 0.983 0.168 0.248
tgfx 0.018* < 0.001*** 0.005** 0.002**
tp dist 0.006** 0.041* 0.039* 0.038*
tp dist shutdown 0.316 0.213 0.031* 0.697
ts 0.086 0.433 0.291 0.296
ts shutdown 0.080 0.149 0.002** 0.786
tsspider 0.315 < 0.001*** 0.004** 0.001**
tsvg 0.893 0.157 0.951 0.679
tsvg opacity 0.127 < 0.001*** 0.262 0.698
v8 0.851 0.008** 0.550 0.857

* p ≤ 0.05, ** p < 0.01, *** p < 0.001

still signified a step in the right direction. Based on
that we can safely assume that part of the originally
observed variation is caused by the external factors
investigated in this section.

Even with the significant improvements from this
section the results do not quite match our expecta-
tions, unfortunately: only 6 of the 17 tests have a
maximum difference of less than 0.5 %. This shows
that there are other factors to consider that we do
not yet have accounted for.

4 Internal factors: CPU Time, Threads and
Events

After dealing with external influences in the last sec-
tion we will now look at factors that involve the inter-
nals of Firefox, specifically, as the title indicates, the
time the Firefox process actually runs and the threads
and events that are used by it. This involves both in-
vestigating how these factors are handled internally
and modifying the source code of Firefox and the test
suite in an attempt to reduce the variance created
by them. Due to space constraints the experiments in
this section are only presented in summarised form
here. The complete results are available in the tech-
nical report (Larres et al. 2012).
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Figure 4: Some of the tests after external optimiza-
tions, displayed as the percentage of their mean

4.1 CPU Time

As already mentioned in Section 3.1.1, wall clock time
is not necessarily the best way to measure program
performance since it will be influenced by other fac-
tors of the whole system like concurrently running
processes. Since we are running Firefox on an exclu-
sive CPU there is less direct influence by other pro-
cesses, but context switch time could still matter. We
therefore modified Firefox and the test suite to record
the CPU time at the start end end of every test run.
This was done using the clock gettime() system call
for the CLOCK PROCESS CPUTIME ID timer.

Unfortunately only a few tests make direct use
of the time that the Talos framework gathers in
this manner, namely tgfx, tp dist, tsvg, and
tsvg opacity; most tests, especially the JavaScript
tests, do their own timing since they are not interested
in the pure page loading time. The results show that
only one of them, tsvg opacity, had a statistically
significant difference from the results from the exter-
nal optimizations, and the variance actually seems to
have gotten worse (CoV 1.35 to 1.88, p = 0.005). This
indicates that the method of time recording and the
number of context switches are not major factors in
contributing to the variance in the tests. Interesting to
note is that two other tests that should not have been
affected also had significant differences (dromeao v8:
CoV 0.52 to 0.7, p = 0.009; tsspider: CoV 0.64 to
1.02, p = 0.016).

Table 5: Correlation analysis for the total number of
events

Test name Coefficient Pearson p-value

dromaeo css 0.30 0.623
dromaeo jslib 0.36 0.554
dromaeo sunspider 0.76 0.135
dromaeo v8 0.41 0.492
tgfx 0.95 0.012*
tp dist 0.97 0.033*
tsvg opacity −0.76 0.236

* p ≤ 0.05, ** p < 0.01, *** p < 0.001

4.2 Thread pools

Firefox uses two different mechanisms for handling
work like rendering web pages and UI interaction:
threads and events. The majority of work is done
using events, but threads are used for a few cases
where asynchronous operations like I/O and database
transactions are needed, for example for bookmark
and history handling. In addition Firefox makes use
of a thread pool for one-off asynchronous events.
Since this thread pool requires creating and destroy-
ing threads on a regular basis, changes in the timings
of when a new thread is needed could lead to measur-
able variance caused by these thread interactions.

We investigated this hypothesis by modifying the
thread pool code to only ever create one thread that
then stays alive for the entirety of the program life-
time, keeping the pool from creating and destroy-
ing threads arbitrarily. Unfortunately the results mir-
ror the ones from our first experiment: only two of
the tests had statistically significant differences, and
in both cases the variance was worse than without
our modifications (dromaeo dom: CoV 0.33 to 0.5,
p = 0.002; tgfx: CoV 1.28 to 1.69, p = 0.026). So
again the thread pool does not seem to be responsi-
ble for the variance that we are seeing.

4.3 Event Variance

As mentioned above, events are the main mechanism
by which work is done in Firefox. So for our third
experiment we wanted to see whether the events used
to execute a certain task, like running a test of the test
suite, was always done using the exact same events
and in the exact same order of dispatch.

For this we again modified Firefox and the test
suite to print out special messages at the points where
events get dispatched during the tests, and ran a test
series. Due to the size of the generated log files and
the time it took to run our analysis script afterwards
this series consisted of only five distinct runs.

Using the information from our log analyses we
can indeed see that there is variation in the number of
events being used during the tests. What is interesting
is that there are some events that occur several times
in some of the runs but not at all in others, but the
overall sum of the events differs far less, proportion-
ally speaking. Since the events are identified by their
complete backtrace instead of just their class we sus-
pect that this is because those events get dispatched
on a slightly different path through the program even
though they belong to the same class.

In order to establish whether the event variance
is actually correlated to the test result variance we
used the Pearson product-moment correlation coef-
ficient (Rodgers & Nicewander 1988), with the null
hypothesis being that there is no correlation between
the variables.



Table 6: Correlation analysis for the order of events

Test name Coefficient Pearson p-value

dromaeo sunspider 0.58 0.079
tp dist 0.98 < 0.001***
tsvg 0.44 0.386
tsvg opacity 0.71 0.113

* p ≤ 0.05, ** p < 0.01, *** p < 0.001

The tests that had at least moderate correlation
(abs(coefficient) ≥ 0.3) are presented in tables 5 and
6. Only two respectively one of them are actually sta-
tistically significant, though, which may be a result of
our small sample size. But it does demonstrate that it
could be worthwhile to investigate this direction fur-
ther. One finding that should be studied more closely
is that the only test that showed significant corre-
lation in both cases is also the one with by far the
longest running time, suggesting that the correlation
may only become significant after the test has been
running for a while, overshadowing other influences
beyond that point.

Interesting to note is that most of the events that
appear out of order depend on external or at least
asynchronous factors, for example ones that interact
with database transaction threads or that make use
of hardware timers.

5 Forecasting

After trying to actually reduce the variance as much
as possible, we will now look at statistical techniques
that aim to separate the remaining noise from genuine
performance changes. Since we need test results that
contain both of these in order to do that, in this Sec-
tion we will use data taken from the official Mozilla
test servers instead of generating our own. Note that
this means that all the results used in this section will
be from different builds, in contrast to our previous
experiments.

5.1 t-tests: The current Talos method

There are essentially three cases that a new value in
our results could fall into, and the goal is for us to
be able to distinguish between them. The first case is
that there are no performance-relevant code changes
and the noise is so small that it can easily be classi-
fied as a non-significant difference from the previous
results. The second one is that there are still no rel-
evant code changes, but this time the noise is much
larger so that it looks like there may actually be rel-
evant changes. The last one is that there are relevant
code changes and the difference in value we see is
therefore one that will stay as long as the new code
is in place.

This suggests one potential solution to our prob-
lem: if we check more than one new value and de-
termine if – on average – they differ from the previ-
ous results in a significant way, we know that there
must have been a code change that introduced a long-
lasting change in performance. Unfortunately this
method has a problem of its own: we cannot imme-
diately determine whether a single new value is sig-
nificantly different, we have to wait for a few more in
order to compute the average.

This is essentially what the method that is cur-
rently employed by Mozilla does. In more detail, there
are two parts to it:

1. Compute the means of the 30 results before the
current one (the back-window) and of the 5 runs
starting from it (the fore-window), that is create
two moving averages.

2. Use a t-test to determine whether the difference
between the means is statistically significant.

The size of these windows again has to be a trade-
off: the back-window should be relatively immune to
short-term noise but also not be distorted by large
changes in the past, and the fore-window should be
small enough to allow detecting changes quickly with-
out producing too many false positives due to one or
two noisy results.

An important thing to note with regard to the fore
window is that it starts at the value we are currently
investigating, not ends. This is because we are inter-
ested in the first value where a regression happens. If
we interpret the performance change as a “step” like
in a step-wise function then starting from the first
value after the step means that all of the values that
are taken into account for the window will share the
same change and thus should ideally lead to a mean
that reflects that, pointing back at the “step” that
caused it.

In order to determine whether there is a significant
difference between the two window sample means we
need a statistical test, and Mozilla chose the so-called
Welch’s t-test which works for independent samples
with unequal variances:

t =
X1 −X2√

s21
N1

+
s22
N2

where Xi, s
2
i and Ni are the ith sample mean, sample

variance and sample size, respectively.
This test statistic t can then be used to compute

the significance level of the difference in means as it
moves away from zero the more significant the differ-
ence is. The default t threshold that is considered to
be significant in the Talos analysis is 9. This seems to
be another heuristic based on experience, but it can
hardly be justified statistically – in order to prop-
erly calculate the significance level another value is
needed: the degree of freedom. Once that is known
the significance level can be easily looked up in stan-
dard t-test significance tables2. However, this degree
of freedom has to be computed from the actual data,
it cannot be known in advance, and it also would be
different for different tests. Using a single threshold
for all of the tests is therefore not very reliable.

5.2 Forecasting with Exponential Smoothing

As already mentioned in the previous section, the cur-
rent method has a few problems. For one thing, the
window sizes used are rather arbitrary – they seem
to be reasonable, but there is no real statistical justi-
fication for them, and the fact that all the values in
the window are treated equally presents problems in
cases where there have been recent genuine changes.
Also, due to the need for the fore window a regression
can usually not be found immediately, only after a few
more results have come in. Apart from this unfortu-
nate delay this can also lead to changes that go unno-
ticed because they only exist for a short time, for ex-
ample because a subsequent change had the opposite
effect on performance and the mean would therefore

2See for example http://www.statsoft.com/textbook/
distribution-tables/#t.



hardly be affected. So instead of a potential perfor-
mance gain the performance will then stay the same
since the regression will not get detected.

We therefore need a more statistically valid way
that can ideally report outliers immediately and that
does not depend on guesses for the best number of
previous values to consider.

A common solution to the problem of equal
weights in the window average is to introduce weight-
ing, that is a weighted average. In the case of our back
window we would give the highest weights to the most
recent results and gradually less to earlier ones. This
would also eliminate the need for a specific window
size, since as the weights will be negligible a certain
distance away from the current value we can just in-
clude all (available) previous values in our computa-
tion. The only issue in this case is the way in which
we assign concrete weights to the previous results.

Exponential smoothing is a popular statistical
technique that employs this idea by assigning the
weights in an exponentially decreasing fashion, mod-
ulated by a smoothing factor, and is therefore also
called exponentially weighted moving average. The
simplest and most common form of this was first sug-
gested by Holt (1957) and is described by the follow-
ing equations:

s1 = x0

st = αxt−1 + (1− α)st−1

= st−1 + α(xt−1 − st−1), t > 1

Here st is the smoothed statistic and α with 0 <
α < 1 is the smoothing factor mentioned above. Note
that the higher the smoothing factor, the less smooth-
ing is applied – in the case of α = 1 the resulting
function would be identical to the original one, and
in the case of α = 0 it would be a constant with the
value of the first result.

The obvious question here is: what is the optimal
value for α? That depends on the concrete values of
our time series. Manually determining α is infeasi-
ble in our case, though, so we would need a way to
do it automatically. Luckily this is possible: common
implementations of exponential smoothing can use a
method that tries to minimize the squared one-step
prediction error in order to determine the best value
for α in each case3.

The property that is most important to us about
this technique is that it allows us to forecast future
values based on the current ones. This relieves us of
the need to wait for a few new values before we can
compute the proper moving average for our fore win-
dow, and instead we can operate on a new value im-
mediately. Similarly we do not have to wait until we
have enough data for our back window before we can
start our analysis. In theory we can start using it with
only one value, although in practice we would still
need a few values for our analysis to “settle” before
the forecasts become reliable.

Normally the exponential smoothing forecast will
produce a concrete new value, which is useful for
the field of economics where it is most commonly
applied. In our case, however, we want to instead
know whether a new value that we already have can
be considered an outlier. For this we need a mod-
ification that will produce confidence intervals. Yar
& Chatfield (1990) developed a technique for that
using the assumption that the underlying statistical

3see for example http://stat.ethz.ch/R-manual/R-patched/
library/stats/html/HoltWinters.html
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Figure 5: Prediction intervals for three values

model of exponential smoothing is the ARIMA (au-
toregressive integrated moving average) model, call-
ing the intervals prediction intervals. The details of
the method are not really relevant here and are also
rather complex, so we will refer interested readers to
the actual paper instead of repeating them here. We
used this modification as it was implemented in the
HoltWinters package for R (R Core Team 2012).

Figure 5a shows an example from the tp dist test
with official test server data and the 95 % prediction
interval for the next three values. We used three here
to make the interval easier to identify, but in practice
only one would be needed.

The figure also demonstrates what influence big
changes in the past have on the prediction intervals.
The big jump in performance in the middle is still re-
flected in the intervals at the end, although the results
themselves would by now clearly lie outside of them if
they were to reoccur. Figure 5b shows the same data
except that the two outliers have been removed, and
we can immediately see that the prediction intervals
are now much more narrow – for example the first
value would now lie outside of them, which was not
the case in the previous figure. Therefore in the case
of such apparently genuine changes that have been re-
verted it might still make sense to remove the values
from the ones that are used for future predictions to
avoid intervals that are unnecessarily wide.

Note that there are a few extensions to this sim-
ple exponential smoothing technique that have been
developed in order to deal with data that exhibits
trends, but our data does not contain any trends and
therefore we did not make use of any of these exten-
sions.

5.3 Comparison of the Methods

We now want to compare our two methods on an
example to give an impression of how they differ in
their ability to distinguish between noise and genuine
changes. For this we used a long stretch of official test
data for the tp dist test and ran both methods on it,
marking the points where they reported a significant
change.
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Figure 6: Comparison of the two analysis methods

Figure 6 shows the result of this comparison. The
test results from three other machines are also de-
picted greyed out in the background to easier deter-
mine which changes are genuine and which are noise,
since the genuine changes will show up in all of the
machines.

Two things can be learned from the graph: first,
and most importantly, our prediction interval method
detects more of the genuine changes than the current
t-test method. For example, the big jumps in August
2010 and February 2011 go undetected by the cur-
rent method since they are followed by equally big
jumps back soon after. This is a result of the need
for more than one value in the respective analysis,
obscuring single extreme values in the process. On
the other hand, all of the changes that are detected
by the old method are also detected by our sug-
gested method, thus demonstrating that previously
detectable changes would not get lost with it.

The second difference can be seen during July/
August 2010: the current method can sometimes re-
port the same change multiple times for subsequent
values, so additional care has to be taken to not raise
more alarms than necessary.

This example demonstrates that our proposed sta-
tistical analysis offers various benefits over the one
that is currently employed. Not only does it give bet-
ter results, it also needs only the newest value in order
to run its analysis. In addition it is also straightfor-
ward to implement, several implementations already
exist in popular software like R3 and Python4.

One disadvantage of our method should be men-
tioned, however. If there is a series of small regres-
sions, each too small to be detected as an outlier,
then the performance could slowly degrade without
any warnings being given. Depending on the exact
circumstances this degradation might be able to be
detected by the old method, but it would probably
be better to develop a different method that is specif-
ically tuned for this case and use this method in ad-
dition to ours.

6 Related Work

Mytkowicz et al. (2009) investigated the effects of

4http://adorio-research.org/wordpress/?p=1230

UNIX environment size and the program link order
on performance measurements. The found that those
factors can have an effect of up to 8 % and 4 %, re-
spectively, on benchmark results and attributed the
variance to memory layout changes. As a partial solu-
tion they proposed randomizing the setup. Gu et al.
(2004) came to a similar conclusion of memory layout
changes through the introduction of new code, but
found that this variance was not well correlated with
the benchmark variance.

Multi-threading variability was investigated by
Alameldeen & Wood (2003), including the possibility
of executing different code paths due to OS schedul-
ing differences, which they called space variability.
Georges et al. (2007) demonstrated that performance
measurements in published papers often lack a rigor-
ous statistical background and presented some stan-
dard techniques that would lead to more valid con-
clusions.

Kalibera et al. (2005) investigated the dependency
of benchmarks on the initial, random state of the sys-
tem, finding that the between-runs variance was much
higher in their experiments than the within-runs vari-
ance. They proposed averaging over several bench-
mark runs to counter this as much as possible, which
is similar to what our experiments did.

Tsafrir et al. (2007) demonstrated that influences
outside of the control of a benchmark can lead to
disproportionally large variance in the results, and
suggested “shaking”/fuzzing the input by carefully
adding noise so as to make averages more reliable.

7 Conclusions and future work

This paper had three main goals: (1) Identifying the
cause(s) of variance in performance tests on the ex-
ample of Mozilla Firefox, (2) trying to eliminate them
as much as possible, and (3) investigating a statisti-
cal technique that would allow for better distinction
between real performance changes and noise.

Section 3 demonstrated that all of the external fac-
tors that we investigated had a certain degree of in-
fluence on the variance, with memory randomization
being the most influential one. This is consistent with
much of the work mentioned in Section 6 that identi-
fied memory layout as having a significant impact on
performance measurements. We also proposed some



strategies to minimize this variance without the ad-
ditional resources needed for the averaging solutions
that others have suggested.

The studying of the internal factors in Section 4
proved to be less useful than we had hoped for, but
it provided us with evidence that they did not have
a significant amount of influence on the result vari-
ance. This suggests that whatever variance remains
more likely has to do with the external environment
instead of the internal workings of the applications to
be measured, allowing better focused future studies.

Finally, in Section 5 we presented a statistical tech-
nique for assessing whether a new result in a test se-
ries falls outside of the current trend and is there-
fore most likely not noise. This technique was shown
to have various benefits over the currently used one,
most importantly it could report some changes that
the one that is currently being used by Mozilla missed.
Additional advantages include being able to run the
analysis on new values immediately instead of having
to wait for a certain number of values that are needed
for a moving average, and similarly the analysis can
start when only a few values are available for a ma-
chine unlike the 30 values that are required for the
current moving average.

In summary we managed to achieve a certain de-
gree of success for all three of our goals. We identified
various external influences and offered solutions to
mitigate them, and suggested a statistical technique
that improves the quality of change detection. Un-
fortunately we did not conclusively find a connection
between the inner workings of Firefox and the mea-
sured variance, but we did find a certain amount of
internal variance. Investigating this discrepancy could
be a promising topic for future work.

Another worthwhile direction would be to apply
our research to other applications, especially other
browsers like Google Chrome. This was outside the
scope of this paper, not the least because those
browsers use entirely different – and not in all cases
even publicly accessible – performance test suites.
The general principle should be the same, though,
so it would be interesting to see whether there are
any differences between the amount of and the causes
of variance. At least our statistical technique is not
tied to any specific application and should work for
anything that can be represented as a time series, re-
gardless of how the data was produced.
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