
Are Your Incoming Aliases Really Necessary?
Counting the Cost of Object Ownership

Alex Potanin, Monique Damitio, James Noble
Victoria University of Wellington, New Zealand

{alex|monique|kjx}@ecs.vuw.ac.nz

Abstract—Object ownership enforces encapsulation within
object-oriented programs by forbidding incoming aliases into
objects’ representations. Many common data structures, such
as collections with iterators, require incoming aliases, so there
has been much work on relaxing ownership’s encapsulation to
permit multiple incoming aliases. This research asks the opposite
question: Are your aliases really necessary?

In this paper, we count the cost of programming with strong ob-
ject encapsulation. We refactored the JDK 5.0 collection classes so
that they did not use incoming aliases, following either the owner-
as-dominator or the owner-as-accessor encapsulation discipline.
We measured the performance time overhead the refactored
collections impose on a set of microbenchmarks and on the
DaCapo, SPECjbb and SPECjvm benchmark suites. While the
microbenchmarks show that individual operations and iterations
can be significantly slower on encapsulated collection (especially
for owner-as-dominator), we found less than 3% slowdown for
owner-as-accessor across the large scale benchmarks.

As a result, we propose that well-known design patterns such
as Iterator commonly used by software engineers around the
world need to be adjusted to take ownership into account. As
most design patterns are used as a building block in constructing
larger pieces of software, a small adjustment to respect ownership
will not have any impact on the productivity of programmers but
will have a huge impact on the quality of the resulting code with
respect to aliasing.

I. INTRODUCTION

Encapsulation is a crucial attribute of object-oriented pro-
gramming and design. Object ownership [1] enforces encap-
sulation by explicitly identifying the internal representation
objects: an object owns its representation, and owned objects
are protected behind the object’s interface. An object should act
as a “single entry point” for its representation — considering
the heap as a graph, an owner dominates the objects that it
owns [2] — in other words, there can be no incoming pointers
to an owned object that bypass the object’s owner. Figure 1
illustrates this: the nodes making up a linked list are owned
by the list — while the element data in the list can exist
outside the list. The most restrictive form of object ownership,
enforced by the ownership types, is both strong and deep: strong
(or prescriptive) because external references to owned objects
cannot be used; and deep, because ownership is transitive —
an object that owns the list owns the list’s links as well.

Strong, deep, ownership offers a number of benefits for
program design, generally because of the single entry point
property. For example, owned objects may be deleted as soon as
their owner becomes inaccessible, supporting real-time memory
management [3]. Security checks carried out on the owning
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Fig. 1. Encapsulated Linked List

object will always govern access to the owned objects [4].
Class invariants can be affected only by the methods defined
in that class and its ancestor classes rather than by method
calls on unrelated objects [5].

Ownership is emerging as an important technique for
designing parallel and concurrent object-oriented systems
to take advantage of multicore processors. Many OO actor
systems, including Kilim [6], Thorn [7], and Scala Actors
[8], impose an ownership discipline to ensure that actors
communicate only via message passing and to prevent one
actor accessing another actor’s internal representation. The
high-throughput pipes-and-filters processing system StreamFlex
uses ownership to ensure isolation between filters executed in
parallel [9]. Parallel languages such as DPJ [10] or AJ [11]
use ownership techniques to describe the data they access and
detect interfering computations.

The problem this paper addresses is that adopting an
ownership or encapsulation discipline may impose runtime
costs on programs. As with other kinds of types, ownership
types can be checked statically or dynamically. Static checks,
carried out at compile time, do not impose any direct costs
on program execution, while dynamic checks will impose
some overhead directly. Ownership disciplines can also impose
indirect costs, by precluding designs that bypass objects’
interfaces and refer directly to objects’ supposedly hidden
internal representations. Figure 2 shows an iterator relying on
an incoming alias into the nodes of a list — such an iterator
can move directly and efficiently from one link to the next,
without any reference to the list object within which the links
should be encapsulated. Designs that respect encapsulation, and
rely on objects’ interfaces, may be less efficient than designs
that breach encapsulation with incoming aliases.
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In this paper we address the question “Are your incoming
aliases really necessary?”. We study two varieties of strong,
deep ownership — owner-as-dominator and owner-as-accessor
— and for owner-as-accessor we consider both static and
dynamic checking. We then attempt to determine the cost of
following each discipline on programs’ design and performance.
The contributions of this paper are answers to three questions
about programming with ownership:

1) How must designs change to respect encapsulation?
2) What performance cost do these changes impose?
3) How does this impact programs’ performance?

The remainder of this paper is structured as follows. First,
Section II briefly reviews object ownership, and describes the
ownership disciplines we investigated for this study. Section III
presents a case study of the design of the core collection
classes and the refactorings required to adapt them to the object
ownership discipline. Section IV describes our benchmarking
methodology, and Section V presents the results of both the
micro- and macro- benchmarks. Finally Section VI discusses
the implications of the results in the context of related work,
and Section VII concludes the paper.

II. OWNERSHIP

The idea of ownership is to partition the objects accessible
from any point in the program according to the object to which
they belong [5], [12], [13]. We consider that objects relate to
each other in one of three modes: owned, peer, and external
objects. An ownership discipline requires programs to keep
these modes separate: type casts, assignments, or subsumption
must not allow an object in one mode to be accessed as if it
were in another mode.

Owned objects are fully private and encapsulated within
their owning objects. In Figure 3, object A owns objects B
and C, and object C owns D. This is deep ownership because
C and D are both owned transitively by A.

Peer objects are siblings with respect to their owning objects,
that is, all peers have the same owner. In Figure 3, B and C
are peers, and can refer to each other without incoming aliases
that would breach encapsulation.
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B

Fig. 3. Relationships between objects with ownership

External objects are — as the name implies — outside the
current object, but are still accessible without any incoming
aliases. In Figure 3, E is external to all the other objects, and
B is external to D. External objects are typically passed in
and out as parameters to objects, such as the elements of a
collection.

In this study we investigate two realisations of the basic
ownership scheme: owner-as-dominator, and owner-as-accessor.

Owner-as-dominator interprets the “no incoming aliases”
constraint following Clarke et al.’s original ownership types
proposal [1]: neither static nor dynamic references are permitted
to cross an encapsulation boundary. In Figure 4, only references
shown by the solid black lines are permitted: from external
objects to their peers; from an owner to the objects it owns; and
between internal peers with the same owner. Aliases that cross
encapsulation boundaries (e.g. the dashed red line in Figure 4)
are forbidden. Considering the heap as a rooted graph, an
owner is a graph-theoretic dominator of all the objects it owns.

Owner-as-accessor takes a different interpretation of the “no
incoming aliases” rule, based on Müller et al.’s Universe Types
[14], and an experimental dynamically-checked ownership
scheme [15]. Owner-as-accessor permits incoming heap refer-
ences — such as the dashed red line in Figure 4 — provided
they are not used directly: and method requests that cross an
encapsulation boundary must do so via the boundary’s owner
object. The external object in Figure 4 cannot use the dashed red
incoming link directly, but it could call a method on the Owner
(dotted green line “1”). Being inside the encapsulation boundary,
just like with owner-as-dominator, that method can then modify
the internal object (dotted green line “2” in Figure 4). What
makes owner-as-accessor different, is that the Owner object
can both accept and return a direct reference to the Internal
object (dashed red line). Such reference can be stored and
passed around but cannot be used to modify the Internal object,
unless the referrer is inside an appropriate ownership boundary.

Figure 5 shows an example following the one in Figure 4.
The Internal object can have references to it stored outside
its Owner (line 8), which would be illegal under owner-as-
dominator. Any modification is only allowed via an appropriate
owner (line 9) and not via external references (line 10).

Owner-as-accessor does not constrain the heap topology, but
it does constrain the control-flow graph: a method invocation
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1 class Internal { String s = "abc"; }
2 class Owner {
3 Internal i = new Internal();
4 void modifyI() { i.s = "def"; } }
5 class External {
6 Internal i; Owner o = new Owner();
7 void doIt() {
8 this.i = o.i; // OK. Stores external ref.
9 o.modifyI(); // OK. Modifies Internal.

10 // this.i.s = "ghi"; // WRONG. Not owner!
11 } }

Fig. 5. Owner-as-Accessor Code Example

upon an owner must dominate all method invocations upon
all objects owned by that owner. This control-flow constraint
is implicit in owner-as-dominator encapsulation: any design
conforming to owner-as-dominator satisfies owner-as-accessor.

In this paper we are concerned with design changes, rather
than the annotations required to express the properties of a
design within an ownership type system, or the properties of
the type system itself. Using the JavaCop program constraint
system [16], we have implemented an ownership checker
based on the theory of Tribal Ownership [17]. Each type
used within a class is assigned to a single ownership mode.
All instances of inner classes are owned by their enclosing
objects, and additional classes can also be annotated as owned.
Method invocations (for both owner-as-dominator and owner-
as-accessor) and assignments (for owner-as-dominator) are
checked to ensure they maintain the ownership invariants.

III. COLLECTIONS AND OWNERSHIP CASE STUDY

The Java Collections Framework [18], [19] has formed
an important part of the Java platform ever since its first
release in JDK 1.2. Designed by Joshua Bloch, there are over
50 classes and interfaces in the framework. The core of the
framework, however, are a relatively small number of interfaces
to collection objects (Set, List , and Map), and a similarly small
set of implementations of those interfaces. Our case study is
based on the Java 5.0 version of Collections, as this is the
version required by the DaCapo benchmarks, see Section IV-B.

The eight classes: ArrayList, LinkedList, HashMap,
LinkedHashMap, TreeMap, HashSet, LinkedHashSet, TreeSet,
plus the legacy classes Hashtable and Vector, form the
backbone of the mainstream collections usage: our case study

analyses these ten implementation classes. We consider the
implementations of the two main abstractions — lists and
maps — in turn, explaining their design; describing how (and
how much) they encapsulate their representations; and if they
do not, outlining refactorings to restore encapsulation. Our
discussion focuses on lists and maps because HashSet and
TreeSet are wrappers that implement sets using HashMap and
TreeMap respectively. Our implementations are available1.

A. Lists

Although the collection objects’ interfaces are quite rich —
ArrayList, for example, defines around thirty methods — for
the purpose of this paper we need to consider only a few. Lists
(and Maps) define get(index) and set(index,element) methods
to read and write collection elements. Lists (and Sets) also
define add(element) and remove(element) methods to add and
remove elements. All collections support an iterator () method
that returns a dependent Iterator object. An iterator supports
at least next() and hasNext() methods that traverse through
the collection an element at a time. We say the iterators are
“dependent” on their underlying collection because they access
(or even update) the actual elements stored in the collection.

1) ArrayList: An ArrayList is one of the simplest of the
collections. An ArrayList<E> stores elements of type E in a
primitive array, and copies and replaces that array as necessary
as the collection grows and shrinks. Elements in an ArrayList
are accessed by simply accessing the corresponding elements
of the array, after checking they are within the range of valid
elements:

Crucial to the correct operation of an ArrayList is that each
underlying array is owned by the ArrayList whose elements
it holds, and so must never be accessible from the outside.
This is because if the list grows (or shrinks) the array will
be replaced with a larger (or smaller) array, and the ArrayList
elements copied from the old array into its new replacement.

This encapsulation is respected even by ArrayList’s iterators.
Implemented as an inner class2, the iterator refers to its
ArrayList via Java’s implicit link between every inner class
instance and their enclosing “outer” class instance. An ArrayList
iterator maintains an integer cursor field that indexes the next
element to be returned. The iterator’s next() method simply
returns the element at the cursor position, and then increments
the cursor.

ArrayLists preserve encapsulation because their methods
and iterators access their list only via that lists’s public
methods size () and get() . Even though it is implemented as
an inner class, conceptually an ArrayList iterator is outside
the ArrayList’s encapsulation boundary — the iterator has no
privileged access to its underlying ArrayList instance, and in
particular does not access any private representation owned
by the ArrayList (e.g. the underlying primitive array). An
ArrayList object always acts as the single entry point for the
list abstraction that it represents.

1http://www.ecs.vuw.ac.nz/∼alex/software/files/own-coll-20120817.tgz
2Technically, an inner class of the AbstractList superclass of ArrayList ,

although that does not affect the encapsulation of the ArrayList .
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Because ArrayList encapsulates its representation, the im-
plementation does not need to change to satisfy owner-as-
dominator encapsulation, and so also satisfies owner-as-accessor
encapsulation. In this case at least, ownership does not impose
any additional performance cost on the design.

2) Vector: The design of the legacy Vector class is broadly
similar to ArrayList. The only issue is that the vector iterator (an
instance of the legacy Enumeration interface) directly accesses
the underlying array owned by the vector. We refactored this
straightforwardly to use the public interface, as in ArrayList.

3) LinkedList: The other standard List implementation, is a
more difficult case than ArrayList or Vector. As we discussed
in the introduction, the LinkedList class maintains a doubly-
linked list of link nodes (instances of the static inner class
Entry<E>). The LinkedList’s iterator maintains an incoming
pointer (called next) that refers directly to the current link Entry.
The iterator’s next() method runs this pointer along the list’s
internal structure, returning the element at the current position.
This structure sharing means that a LinkedList object is not a
single entry point to its representation — every outstanding
iterator on the LinkedList accesses the list Entry nodes directly.

4) Naı̈ve Owner-as-Dominator LinkedList: Our first refactor-
ing was simply to adopt the ArrayList iterator described above
— the ArrayList iterator requires only a List interface, and
LinkedList implements List . Unfortunately, we expected that
this design would not perform very well and our initial tests
confirmed our expectations. The problem is that the iterator
calls get(index), and the get(index) method on a linked list must
start from the beginning (or end) of the list and count along
until it locates the list Entry holding the indexed element:
An individual call to get() on a LinkedList will be O(N)
and a whole iteration will be O(N2). So: while adopting an
ownership discipline can simplify the design of the LinkedList
class — suggesting the use of a more abstract iterator — this
naı̈ve design would impose a substantial performance cost 3.

5) Single Place Cache: The JDK specification makes clear
that programmers should expect the performance of LinkedLists
will always be O(N) for individual random accesses. The
specification also makes clear that programmers should expect
O(N) for a full traversal via an iterator. The original iterators
with direct pointers into the list delivered this performance.
A slightly more complex design, however, can restore O(N)
traversals in most cases, while preserving owner-as-dominator
encapsulation — the LinkedList object owns its list entries, and
remains the single entry point of access to those list entries. We
add a cache to the linked list that remembers the last accessed
entry and its index. A call to get(index) can look into the cache,
and update the cache once it has found the requested element.

In this design, a single (forward or reverse) traversal
via an iterator, or even a traversal driven programmatically
sometimes forwards and sometimes backwards, should have
O(1) performance for a single call to next() and consequently

3While it may seem unreasonable to replace an O(1) operation with an
O(N) one, we have examined an average number of iterators per instance of
a linked list in all of DaCapo benchmarks and found it to be low: 4 or 5 per
list for the avrora and pmd and less than one per list for most others [20].
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Fig. 6. List Iteration by Proxy

O(N) for a full traversal of the list. The overhead of the cache
itself should not be substantial. Random access to a LinkedList
will still have O(N) performance for each get() , but this is
permitted by the framework specification, since LinkedList is
not a random access structure. The specification also invalidates
all except one iterator whenever the list is modified. This forbids
modifications by more than one iterator, and so we expect a
single place cache should suffice for most LinkedList use cases.
Multiple simultaneous traversals that purely read data, however,
would still revert back to O(N2) performance, but we expect
such uses of LinkedLists to be rare, as ArrayLists are quicker
to traverse than LinkedLists, and have around a quarter of the
storage overhead.

6) Owner-as-Accessor via External Proxy Iterator: As
Figure 2 showed, the problem with the standard Java Iterator
is that it is outside the List but must directly manipulate links.
So long as the standard Iterator is only ever used inside the
List , there are no encapsulation breaches. Figure 6 shows
an alternative to this design that maintains owner-as-accessor
encapsulation, but not owner-as-dominator.

A proxy iterator is a peer of the List , and is thus accessible
outside. ProxyIterator maintains a reference to a standard
Iterator inside the List , but does not use that reference directly.
In response to a next() method invocation on the external
proxy iterator, the proxy invokes itNext ( iterator ) on the List ,
passing the actual internal iterator as a parameter. At this point,
control flow passes into the List object (thus maintaining owner-
as-accessor) which then invokes next() on the encapsulated
Iterator . The cost of this refactoring is creating the external
proxy, plus redirecting its calls via the owning List . An
important constraint of this design is that we must be careful
to pass the proxy iterator only into the list to which it belongs.
This can be checked statically by advanced ownership type
systems [21], or it can be checked dynamically [15].

7) Owner-as-Accessor via Indirection Iterator: The proxy
iterator refactoring avoids changing the standard list iterator,
but requires creating the external proxy. Figure 7 shows our
final list refactoring, using a single “indirection iterator” object
that plays the roles of both external proxy and internal iterator.

The indirection iterator presents the standard Iterator
interface (e.g. next()) and forwards those messages to its List ,
just like the external proxy. Whereas the external proxy passed
the internal Iterator as an argument, here the indirection iterator
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Fig. 7. List Indirection Iterator

passes itself as an argument. The implementation of itNext ( itr )
in List retrieves the current link (getLink) from the iterator and
directly gets the next link (getNext). The external iterator keeps
references directly into the List ’s internal links (rather than to
a proxy) but never uses those links directly, thus maintaining
owner-as-accessor encapsulation but not owner-as-dominator.
We expect this refactoring to be more efficient than a proxy
iterator, but it is more expensive to perform, as we cannot reuse
the standard iterator object, but rather must incorporate its code
into the itrNext () -style methods on the List object. And, as
with the proxy design, we must ensure the indirection iterator
is only passed into the list to which it belongs, checking either
statically or dynamically.

8) Other Possible Iterator Refactorings: There are more
alternatives to consider for ownership-aware list and iterator
refactorings. The last author discussed the possibilities in detail
in a separate paper [22]. For this presentation, we chose the
ones we thought would be most representative and easy for
software engineers to adopt in practice. More efficient versions
include a “magic cookie iterator” [22] that stores an appropriate
cached position for each existing iterator of the current list
communicating using a simple unique id or “magic cookie”.

B. Maps

The Map<K,V> interface is the other major interface
within the collections framework. Maps provide put(K,V)
and V get(K) methods to store and retrieve values V associ-
ated with keys K. Maps are not directly iterable — rather
they provide methods that return three separate dependent
iterable views: Set<K> keySet(); Collection<V> values() and
Set<Map.Entry<K,V>> entrySet(), all of which have their own
iterators that support modification. The key set (and value
collection) contain a set of all the keys (and a bag of all
the values) in the underlying map: the entry set is a set of
objects that each represent a single key-to-value association
and implement the Map.Entry<K,V> interface.

The key encapsulation issue with the core Map implementa-
tions is that the Entry objects available via the entry set are the
very same entry objects that implement the map. Furthermore,
the key and value sets are implemented in terms of the entry
set and the entries it contains. This is a tightly coupled design:
Figure 8 attempts to show these interrelationships.

Values
V

Iterator
Entry<K,V>

Iterator
K

Iterator
V

EntrySet
K,V

Entry
K,V

Map
K,V

KeySet
K

*
*

*

*

Fig. 8. Map Interfaces. Dashed lines show conceptual dependencies, while
solid lines show references in most implementations.

1) Refactoring HashMap: For this case study, we first aimed
to find a design for maps with a single point of entry that could
maintain owner-as-dominator encapsulation over as much of
the map as possible. In particular, the entry objects storing the
key-value mappings need to be protected from outside access.
This is straightforward. The problem then is that our refactored
maps need to preserve the existing collections’ Map interface,
so we could exchange implementations to benchmark each
design. This means that the dependent set views of a map (the
key set, values collection, and entry set); their iterators; and
the entry objects must remain available to Map clients.

To support these use cases, we again introduce proxies for
these objects as peers of the maps as shown in Figure 9. Writes
to the proxies update the underlying map by calling put(K,V)
through the main map object’s interface, rather than by being
part of the map’s representation themselves. Within the body
of a map implementation (say HashMap) there are three Entry
types: Map.Entry is the common public interface used by clients,
HashMap.Entry is the owned inner class; and EntryProxy is the
(common) peer class. The ownership discipline ensures the
peer entry proxies cannot be confused with the owned entry
objects and vice-versa.

As a result, the Entry<K,V> objects are not accessible
outside of the Map<K,V> object that owns them. All three
of the map views (key and entry sets and values collection)
and their respective iterators do not have direct references
to map’s entries. Instead they work with EntryProxy<K,V>
objects that mirror the Entry<K,V> objects encapsulated inside
the map and store the same key-value pair as the mirrored
entry without allowing direct access to the internal structure of
the map. Any modification to such entry proxies will not have
any effect on the map’s internal representation and any code
that relies on modifying the map by manipulating is entries
directly as opposed to using map’s public interface will no
longer work. An important result of our study is that in none
of the benchmarks under consideration have we found any
instances of such manipulation and thus the only reason for
exposing the internal entries behind each map is presumed
efficiency improvement.
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Fig. 9. Refactored Map. The Map’s Entry instances are owned by the Map
object. Dependent views and iterators access the Map only via the Map
object’s interface, and substitute EntryProxy objects for Entry objects.

The dependent view iterators are the most challenging part of
this refactoring. All three iterators are subclasses of the abstract
inner class HashIterator<E> which traverses the HashMap
by accessing the underlying table and Entry objects directly.
To restore owner-as-dominator encapsulation, we refactored
the design to introduce a completely external iterator, similar
in style to the ArrayList iterator, that does not use incoming
pointers into the HashMap’s implementation. This iterator keeps
track of the current and next keys, and uses new K getFirstKey(),
K getNextKey(K key), and hasNextKey(K key) methods on the
HashMap to manage the iteration. The implementation spe-
cific code from the original iterators’ nextEntry() method is
refactored to call the map’s getNextKey() method.

2) LinkedHashMap: The LinkedHashMap class extends the
HashMap by threading a doubly-linked list between the table
Entry objects to support quick and stable traversal. Once we had
refactored HashMap, the only change LinkedHashMap required
was to ensure the getNextKey() method traversed the list.

3) Hashtable: The design of the legacy Hashtable class is
broadly similar to HashMap, with the same underlying design
from Figure 8 and the same epidemic of inner classes and
aliases, although the method names and interfaces are not
compatible. Like the other legacy class, Vector, all accesses
to a Hashtable are synchronized. We were able to encapsulate
Hashtable using very similar refactorings to HashMap. Our
refactored implementation also reuses the common Map key-
based traversal methods and the common EntryProxy class. We
had to refactor the existing Hashtable iterators, rather than reuse
the shared implementation, because Hashtables must support
both the Iterator and the legacy Enumeration interfaces.

4) TreeMap: We originally planned to refactor the TreeMap
class separately, once we had completed the refactorings
of the various hash-based maps. Considering the refactored
map design (Figure 9) we realised that we would in fact
be able to re-use all the iterator, view, and entry objects
from HashMap, because they can only communicate with their
underlying map via that map’s public interface: encapsulating
the representation has also abstracted the representation behind

that interface (albeit extended with the various getFirstKey() /
getNextKey(K key) methods). In the same way as the residual
public interface of a linked list is the List interface, the residual
public interface of the various map classes is just this extended
Map interface, and so one single, reusable, common external
iterator class suffices to iterate over any kind of map.

Again, we expect that the narrower interface between an
iterator and its underlying collection will decrease the efficiency
of the iteration. Calling getNextKey(currentKey) will require
tracing down from the root of the Red-Black tree to the node
holding that key, and this is certainly more work than just
following a pointer directly. We also tried single place caches
(as with LinkedLists, Section III-A5), but disabled them for
our tests as the DaCapo xalan benchmark did not tolerate the
resulting behaviour.

5) Owner-as-Accessor Maps: Finally, we refactored all the
maps to maintain owner-as-accessor encapsulation rather than
owner-as-dominator. We applied the two refactorings we used
with LinkedList to each Map, in spite of the differences between
Map implementations. We built external proxies for the various
iterators, sets, and entries that simply stored references to the
standard iterators etc., which were treated as internal to the
maps, just as in the LinkedList proxy iterator (Section III-A6
and Figure 6). These proxies were able to be reused across all
the Map implementations. Then we built indirection iterators,
sets, and entries following the design of the corresponding
indirection objects for the LinkedList (Section III-A7).

IV. EXPERIMENTAL METHODOLOGY

To evaluate our refactorings, we performed a number of
benchmark studies comparing the original and refactored
collections: we include three small microbenchmarks and
the three major benchmark suites: DaCapo, SPECjbb2005
and SPECjvm2008. The refactored collections include: OasD
that implements owners-as-dominators discipline, Proxy that
implements owners-as-accessors using a proxy iterator, Proxy
Dynamic that also performs a run-time ownership check,
Indirection that implements owners-as-accessors using an In-
direction Iterator, and Indirection Dynamic that also performs
a run-time ownership check. In this section we describe our
methodology, and present the results in the next section.

A. Microbenchmarks

These three microbenchmarks test collections’ performance,
focusing on the cost of iterating over a whole collection.

1) The IteratorLoops test from the Doug Lea’s JSR166
collections microbenchmarks [23]. This runs a large
number of traversals over partially filled collections with
occasional additions of elements. The result is the time
taken for a single next() step of an iterator.

2) LinkedList iteration: (a) forwards; (b) backwards; (c)
forwards, but with two iterators interleaved, the second
iterator indices after the first. The last test disrupts the
caching algorithm in the refactored linked list.

3) The MapMicroBenchmark test from the Doug Lea’s
JSR166 collections microbenchmarks [23]. This runs a
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large number of element-level map operations reflecting
a typical usage of maps in the real world and reports
an average time an operation takes. This works on on
table-based map implementations only (i.e. not TreeMap)
and we evaluated different map sizes in increasing order.

To make sure that our numbers were not disturbed by the
garbage collector or just-in-time compiler, we warmed up
the VM before timing the tests. We set the −XX+PrintGC
and −XX+PrintCompilation options and checked our traces that
compilation or collection did not occur during timed runs. Each
microbenchmark was run 25 times and the results analysed.

B. DaCapo Benchmarks

The DaCapo benchmark suite [24] is a well-established
benchmark suite representative of typical Java loads. We in-
cluded every benchmark in DaCapo in our study: avrora, batik,
eclipse, fop, h2, jython, luindex, lusearch, pmd, sunflow, tomcat,
tradebeans, tradesoap, and xalan. The DaCapo benchmarks
come with data sets of different sizes. We used the large size
for each benchmark where it was available. The fop and luindex
do not include a large size, so for these two benchmarks we
used the default size.

We carried out 5 runs of 30 iterations of each benchmark,
of which the last 5 are used, resulting in 25 data points for
each benchmark in each condition [25].

C. SPECjbb2005 Benchmark

SPECjbb2005 is a Java Server Benchmark capturing the com-
mon types of server side Java applications today. SPECjbb2005
is well-known for making a heavy use of collections and was
thus considered essential to be included in our study. Following
the other benchmarks in our paper, we ran SPECjbb2005 on a
default set of 16 warehouses 25 times and report the averages
of these runs for different collections implementations.

D. SPECjvm2008 Benchmark

SPECjvm2008 is a Java Virtual Machine Benchmark that
measures the performance of a typical Java Runtime Environ-
ment using a selection of real life applications focusing on
core Java functionality. We included it for completeness as a
more traditional macrobenchmark with a caveat that DaCapo
was designed to improve on the number of shortcomings of
SPEC-style benchmarking [24].

E. Execution Environment

Our choice of Java Development Kit (JDK) version and thus
Java Collections Framework implementation was driven by the
latest version of DaCapo Benchmark Suite [24]: v9.12, released
in December 2009. DaCapo was built using Java v1.5.0 and
this is the version of JDK and Java Collections Framework that
we used: in particular the 1.5.0 22 version as the latest Java
v1.5.0 version available on the Oracle web site. We executed all
the tests on the Java HotSpot(TM) Server VM (build 1.5.0 22-
b03, mixed mode). We compiled the modified collection
implementations with javac version v1.5.0 22. This meant
that we had to omit one of the SPECjvm2008 benchmarks
(xml.transform) that requires a later version of Java.
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We placed the modified collections and the same classes
that were unmodified in the “ownership” and “original” folders
and then utilised the Java −Xbootstrappath/p: option to place
our classes in the beginning of the JVM boot class path.

We ran all our tests on a Ubuntu Linux v11.4 machine using
v2.6.38-8 SMP kernel with the SMP option selected in the
kernel, configured to only use 7 of the 8 cores available in our
Dell OptiPlex 790 (Intel Core 2 i7-2600 CPU 3.40 GHz with
4GB of RAM). We used the Linux taskset command to set the
CPU affinity of our Java Virtual Machine to the unused core
to minimise disturbance from the rest of the operating system.

V. RESULTS

A. Microbenchmarks

1) IteratorLoops: Figure 10 shows the results of the
IteratorLoops benchmark from JSR166 benchmarks for all
the collections in the original and five ownership refactored
variants. The figure plots the mean time (in nanoseconds) for
1 iteration step (i.e. a call to next).

We can observe that owner-as-dominator refactored imple-
mentations were slower per iteration by a factor of 3, except for
Hashtable and TreeMap (and hence TreeSet), which are slower
by factors of seven or eight. In the case of Hashtable the fact
that every method is synchronized, including helper methods to
get next key or check for modifications, seems to have played
a major part. In the case of the tree-based collections, it is
indeed much slower to search for the next entry from the root
of the tree, rather than following an incoming pointer.

However, observe that all four of the owner-as-accessor
refactored implementations were not significantly different
from the original collections.
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TABLE I
FULL RESULTS TABLE (FORMAT: MEAN|SD; STATISTICALLY SIGNIFICANTLY DIFFERENT VALUES SHOWN IN BOLD)

Benchmark Original OasD Proxy Proxy D. Indirection Indirection D. Number Percent
DaCapo (Time in ms; lower is better)

avrora 23003 300 22781 415 22816 236 22867 179 22948 389 22873 323 219049309 78.08%
batik 2516 34 2517 19 2520 25 2519 19 2519 25 2528 30 26507124 31.37%

eclipse 53793 1031 53480 936 53716 1010 53812 1329 53554 1406 53608 738 355465429 33.63%
fop 393 27 397 29 394 20 397 23 396 23 399 20 1874892 18.07%
h2 24133 580 24238 593 24141 517 24188 380 23967 320 23934 375 90175446 8.04%

jython 15041 215 15476 100 15725 107 15719 53 15837 110 17050 145 159700109 7.49%
luindex 705 18 687 23 714 22 713 19 710 40 718 51 327466 36.66%
lusearch 7251 184 7334 105 7181 189 7120 198 7226 299 7325 78 11979688 5.45%

pmd 3944 47 3992 39 4046 59 4065 72 4005 64 4054 67 10712544 36.55%
sunflow 22656 518 22560 365 23365 126 22970 711 22851 523 22331 207 171198077 <0.01%
tomcat 7576 108 7641 135 7687 134 7736 111 7733 88 7661 118 16726923 13.95%

tradebeans 27952 409 27556 494 28258 506 28142 275 27998 328 28020 340 1621619 33.00%
tradesoap 64476 1251 65193 1549 65042 1712 65119 1463 64390 1378 65111 1499 1631193 32.82%

xalan 26604 384 26692 318 26383 247 26173 258 26125 251 26310 291 61153799 13.23%
SPECjbb2005 (Throughput; higher is better)

SPECjbb2005 29598 405 14062 181 28825 860 28540 619 28959 764 28394 641 35542855 4.87%
SPECjvm2008 (Time in ms; lower is better)

compress 46.56 0.81 46.77 0.59 46.71 0.59 46.82 0.42 46.83 0.42 46.84 0.57 199478 20.21%
crypto.aes 18.49 0.18 18.40 0.13 18.46 0.10 18.48 0.18 18.42 0.10 18.48 0.19 254853 22.00%
crypto.rsa 35.04 0.25 34.89 0.28 34.92 0.31 34.95 0.36 34.94 0.25 34.95 0.27 6535358 11.18%

crypto.signverify 53.06 0.27 52.97 0.31 53.11 0.29 53.16 0.36 53.09 0.38 53.12 0.29 3290783 2.13%
derby 21.55 0.48 21.63 0.40 21.56 0.50 21.73 0.43 21.59 0.38 21.61 0.33 89061937 3.04%

mpegaudio 15.08 0.05 15.10 0.05 15.08 0.06 15.11 0.05 15.10 0.06 15.07 0.06 209089 20.32%
fft.large 23.61 0.27 23.53 0.30 23.49 0.27 23.43 0.28 23.55 0.24 23.51 0.38 168290 23.78%
fft.small 82.75 4.49 84.24 5.21 84.98 3.94 83.35 4.01 84.46 4.70 83.57 4.26 439646 9.22%
lu.large 6.98 1.44 6.69 1.24 6.72 1.22 7.05 1.39 6.34 0.96 7.02 1.42 166728 23.92%
lu.small 107.98 0.87 107.61 0.92 107.48 0.75 107.58 0.84 107.94 0.70 107.82 0.85 642713 6.39%

monte carlo 15.33 1.49 15.33 1.48 15.65 0.10 15.67 0.11 15.63 0.03 15.29 1.47 179253 22.58%
sor.large 13.01 0.02 13.01 0.02 13.01 0.01 13.02 0.02 12.99 0.05 13.01 0.01 167449 23.92%
sor.small 57.47 0.11 57.47 0.10 57.49 0.10 57.47 0.12 57.43 0.07 57.44 0.10 193425 21.16%

sparse.large 11.51 0.23 11.97 1.22 11.70 0.28 11.82 0.80 11.71 0.34 11.77 0.36 166691 23.98%
sparse.small 43.87 0.11 43.79 0.12 43.80 0.18 43.83 0.11 43.85 0.18 43.80 0.15 182676 22.17%

serial 33.22 0.98 32.46 0.96 33.27 0.81 33.04 0.92 32.88 1.31 33.31 0.89 51123977 5.68%
sunflow 20.51 0.50 20.48 0.50 20.55 0.32 20.42 0.52 20.22 0.63 20.51 0.47 42506559 0.12%

xml.validation 63.38 1.09 63.01 0.96 63.36 1.03 63.19 1.42 63.75 1.39 63.23 1.03 10318760 3.33%

2) List Iteration: Figure 11 presents a microbenchmark
comparing the original and refactored versions of the linked
list: note the log scale on the y-axis. The graph shows the time
for a single next call. The “disruptive” benchmark for owner-
as-dominator version shows linear performance for a single
step, (thus O(N2) overall) while the other iterators (including
all owner-as-accessor implementations) behave linearly for
different collection sizes (i.e. O(N) overall as expected). As
collection sizes get larger, the amortised time for the refactored
collections approaches that of the original collections.

3) Map Iteration: Figure 12 presents results of the Map-
MicroBenchmark benchmark from JSR166 benchmarks for
three different kinds of maps: HashMap, LinkedHashMap, and
Hashtable. We used the default parameters for the microbench-
mark and map sizes and report the averaged results for the
largest map size. Observe that owner-as-dominator performs
only 20% slower than the original while all four of the owner-
as-accessor perform with no more than 3-5% slowdown.

B. DaCapo, SPECjbb2005, and SPECjvm2008

Table I presents the results of the DaCapo, SPECjbb2005,
and SPECjvm2008 benchmarks. displays the mean runtimes.
For each benchmark, for standard and refactored collections,
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Fig. 12. Microbenchmark 3: MapMicroBenchmark (nanoseconds per
element operation (averaged across get, put etc) across different element types)

the time taken was recorded for 25 runs. We wanted to test
whether the mean time taken differed between the original
and five ownership versions, while controlling for the different
times needed for different benchmarks. We show the average
times across all runs and include a standard deviation for
all DaCapo benchmarks. For SPEC benchmarks we report a
throughput in either “bops” or “operations per minute” and
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again include the standard deviation alongside the mean across
25 runs.

Usually one would use Analysis of Variance to test the null
hypothesis that the mean time taken did not differ between the
standard and refactored collections. However, ANOVA assumes
the data are normally distributed and that the variances of
time taken are the same in all 2 × 14 = 28 groups. In our
data, these assumptions did not hold for all benchmarks. Data
transformation did not solve this problem. We therefore used
non-parametric methods (which do not require normality nor
equality of variances) – in particular the Asymptotic p-value
of the Mann-Whitney U test – separately for each benchmark,
to determine whether we could reject the null hypothesis that
the mean time taken for the standard and refactored collections
was the same. To perform these tests, we used PASW Statistics
18 Release 18.0.0 (Jul 30 2000), hosted by Microsoft Windows
Server 2003 Standard Edition Service Pack 2, running on an
Intel Xeon 5130 2.00GHz with 4GB of RAM.

Table I includes the results of the Mann-Whitney test,
showing the refactored results with a statistically significant
difference from the performance of the original collections in
bold. We reject a null hypothesis at significance level p < 0.05.
We can reject the null hypotheses that the means are the
same for the refactored implementations for 40 of the 165
refactored benchmarks: for the others, we were unable to show
a statistically significant difference. We refer the interested
reader to a technical report accompanying this paper [20] that
contains the obtained p-values and clustering results.

Finally, we also measured the number of objects instantiated
during each benchmark run and the percentage of them that
were collections from the java. util package [26]. Having
observed a significant slowdown for the SPECjbb2005 in the
case of owner-as-dominator, we have also measured the time
this benchmark spent in the methods of java. util collections
as the percentage of objects was low (4.87%). We used
−Xrunhprof:cpu=times to obtain such timings and found that
the original version spent 7.79% of its time in the collections
methods and the owner-as-dominator spent 13.94% of its time
in the collections methods (almost all of it in TreeMap). We
hypothesise that the lack of caching used in our owner-as-
dominator map implementations caused this and we can see a
number of ways in which this can be improved similar to the
way linked lists can be made faster with caching.

VI. DISCUSSION AND RELATED WORK

The results we have presented have at least two alterna-
tive interpretations. First, incoming aliases into collection
implementations are absolutely necessary in specific cases,
as refactoring to an encapsulated interface means collection
operations’ runtime performance will be five to ten times
slower than otherwise. Second, incoming aliases into collection
implementations are clearly unnecessary in general, as the
largest significant slowdown in the DaCapo experiment was
less than 2%. The truth, no doubt, lies somewhere in-between.

The reasons for the microbenchmark results, at least, seem
clear: more general (and reusable) interfaces are also by

necessity less efficient. Our refactorings imposed additional
hash lookups, and additional list and tree traversals, when an
incoming pointer could take the program directly to exactly
the right place without any such overhead.

The reasons for the macrobenchmark results are less clear.
Perhaps there is a small effect, but the variability introduced
by a JITting VM, garbage collector, the underlying operating
system mean the effect is lost in the noise. Arguably, however,
most programs would not be affected by such a small overhead.
Perhaps collections do not make up a significant portion of the
DaCapo benchmarks execution time? This is certainly the case
for sunflow and luindex, although as Table I illustrates, most of
the benchmarks create tens of thousands of collection objects,
and some benchmarks create millions. The DaCapo benchmarks
have been selected to model realistic Java workloads [24]: if
they are a reasonably accurate gauge of the use of collections
in Java programs, then we would not expect significantly higher
runtime impacts upon other Java applications.

a) Evaluating Ownership: There have been a number of
implementation studies evaluating ownership types [27], [11]
— some quite extensive [28]. Generally these studies were
undertaken in the context of validating a particular type system
proposal and the performance evaluation did not specifically
concentrate on the costs of various ownership-friendly designs.
Many of these studies used the collections library as an example,
and were able to check the whole of the collections library,
albeit with varying amounts of annotation, depending on the
system. The AJ collections reimplementation in particular
included some performance analysis using a selection of Java
applications and SPECjbb benchmark — they found that a
tuned version of AJ collections performed only marginally
slower than the standard Java version (Figure 22 in [11], which
aligns well with our findings.

These studies differ from the approach we have adopted
here because they were mostly based on more flexible (i.e.
less encapsulating) ownership disciplines — confining objects
within regions rather than per-object ownership [29], or by
permitting incoming pointers in some circumstances [27]. The
problem is that these supposedly “benign” incoming references
can drastically reduce encapsulation.

There have been surprisingly few stand-alone case studies
evaluating ownership per se. The closest research to this
work is Stefan Nägeli who studied how ownership affected
design patterns and the Swing GUI library [30], and Cele and
Stureborg [31] who implemented three medium-sized programs
while respecting an strong ownership discipline. Both studies
found that ownership could help structure programs, but could
also be a cause of refactoring and redesign: this chimes with our
experience. Neither study considered the potential performance
cost of the encapsulation enforced by ownership.

b) Inversion of Control: Many of the problems we
encountered, particularly with the Map iterators, can be
understood in terms of inversion of control: we would have
had no problem writing an “internal iterator” method for each
collection implementation to iterate over all their elements.
Because these methods are encapsulated within each collection
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class, there is no need (or temptation) to breach encapsulation.
The reason, of course, is that in an internal iterator, control and
data flow are both efferent, flowing from the collection to the
iterator . By contrast, an in external iterator, data flow remains
efferent, but control flow is afferent: the external iterator calls
in to the collection that hands each element back in turn.

CLU-style generators [32] (as popularised in Python, Ruby,
and C]) are an alternative solution to this problem: programs
are written as if they used simple internal iterators — with
all the benefits for encapsulation that implies — and then the
generator construct inverts the control flow.

c) Further Work: The Java collections continue to evolve.
We worked with the version 5 collections because that worked
with DaCapo. Repeating this study once closures support is
integrated into the main Collection APIs (and once benchmarks
have evolved to rely upon those APIs) could address some of
the hypotheses above regarding inversion of control.

VII. CONCLUSION

In this paper we present the first experimental evaluation of
the cost of ownership types. We examined the use and breaches
of encapsulation in the core classes of the Java Collections
Framework. We refactored those classes as necessary to fit
the owner-as-dominator and owner-as-accessor encapsulation
disciplines. We measured the overhead of these refactorings that
showed encapsulation reduces iteration performance by factors
of 2 to 8. Finally, we compared the performance of the DaCapo,
SPECjbb, and SPECjvm benchmark suites, gaining statistically
significant results for a number of benchmarks, SPECjbb owner-
as-dominator demonstrating the largest slowdown. Owner-as-
accessor slowed down no more than 3% for all benchmarks,
even with dynamic ownership checking.

We hope these results may encourage object-oriented de-
signers to consider object encapsulation more carefully when
designing their programs — especially their use of incoming
aliases to circumvent encapsulation — and to ask themselves:
are their incoming aliases really necessary?
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