
Snapshot Query-Based Debugging

Alex Potanin, James Noble, Robert Biddle
School of Mathematical and Computing Sciences

Victoria University of Wellington
New Zealand

{alex,kjx,robert}@mcs.vuw.ac.nz

Abstract

Object-oriented programs, when executed, produce a
complex webs of objects and references between them, gen-
erally referred to as object graphs. These object graphs are
difficult to design correctly and even more difficult to de-
bug if incorrect. Unfortunately, very subtle bugs in object-
oriented programs are directly caused by object graph
topologies. Snapshot query-based debuggers let program-
mers examine object graph snapshots of programs in detail
using a specially designed query language. This provides
users with an ability to debug and examine their programs
in great detail at the time when the memory snapshot is
taken.

1 Introduction

Debugging programs is a task that software engineers
face on a daily basis. Debugging of object-oriented pro-
grams is particularly hard because their behaviour is charac-
terised by their object graphs — memory structures formed
by the objects on the heap and the references between
them. Analysis and debugging of object graphs has al-
ways been an active area of software engineering research
[19, 3, 2, 6, 4, 11]. Such study can provide valuable insights
into the real behaviour of a given program, sometimes dif-
ferent from the intended behaviour created by the program-
mer(s) who wrote the underlying classes.

Query-based debugging allows programmers to formu-
late queries about the state of the object graph of a program,
or the state of a program at a given moment of time. Unfor-
tunately, many of the query-based debugging tools require
modifications to the program being debugged [4], or they
require changes to the run time environment that executes a
program being analysed [6].

In this paper we present a snapshot query-based debug-
ger combining query-based debugging with close exami-
nation of heap snapshots. We access a complete state of

the heap via the profiling interface and provide a query lan-
guage that can be used to examine a heap snapshot in great
detail. To demonstrate the feasibility of snapshot query-
based debugging, we have implemented a proof-of-concept
prototype tool, called Fox. It doesn’t require any additional
changes to the run time environment of a program, other
than those already provided by modern virtual machines
such as JVM or .NET CLR [14, 7].

Section 2 briefly surveys the area of object graph analysis
and query-based debugging. Section 3 presents the query
language that we developed and how it is designed to help
users examine the heap snapshots to help with debugging or
research. Section 4 presents a selection of examples, using
the query language to debug and examine programs’ mem-
ory. Section 5 surveys the related work. Finally, section
6 discusses future work. The detailed architecture and the
design of the tool is described in a more detailed technical
report [10].

2 Background

An object graph — the object instances in the program
and the links between them — is the skeleton of an object-
oriented program. Because each node in the graph repre-
sents an object, the graph grows and changes as the pro-
gram runs: it contains just a few objects when the program
is started, gains more objects as they are created, and loses
objects when they are no longer required. The structure of
the graph (the links between objects) changes too, as every
assignment statement to an object’s field makes or changes
an edge in the graph.

Figure 1 illustrates the object graph of a simple part of a
program — in this case, a doubly-linked list of Student
objects. The list itself is represented by a LinkedList
object which has two references to Link objects repre-
senting the head and tail of the list. Each Link object
has two references to other Link objects — the previous
and the next links in the list, and a third reference to one
of the Student objects contained in the list. Although

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Nelly

Students
:LinkedList

Head:Link Middle:Link Tail:Link

:Student:Student
Christina

:Student
Betti

Figure 1. Simple object graph of a linked list

the overall structure is clearly a general directed graph with
many cycles, rather than a tree or a directed acyclic graph,
some objects (such as the Student “Nelly”) are accessed
uniquely by only a single reference.

2.1 Heap Analysis

Most modern object-oriented languages, like Java or lan-
guages built on top of .NET, have managed memory to
provide facilities such as garbage collection. This allows
programmers to easily access any information about the
contents of program’s memory via special debugging inter-
faces. It is typically possible to dynamically receive events
about object construction and destruction, or obtain a com-
plete snapshot of the entire object graph — a heap snapshot
— to analyse in detail.

Any modern debugger, for example DDD [16], can stop
a program’s execution and allow a programmer to examine
the objects pointed at from the stack, or those stored in the
heap. We can use breakpoints to stop the execution near the
part of a program that we are interested in. Unfortunately,
these tools typically provide us with an ability to examine
the values of a particular variable or object, but not a coher-
ent way to study general patterns or relationships within the
heap.

An alternative approach is to examine a single heap snap-
shot, rather than monitoring a program as it executes. For
example the Heap Analysis Tool (HAT) [1] is designed to
allow a user to take a heap snapshot obtained from a running
Java program and traverse the information about individual
objects starting with the objects in the root set. Each object
in the snapshot is represented using a web page that contains
links to other objects that it points to.

2.2 Query-Based Debugging

Query-based debuggers [6,4] allow a user to examine the
state of a program by formulating a query using a query lan-
guage that the debugger can evaluate. Queries can be logi-
cal relationships between the values of variables (what is the
average value of the field size among all the isntances of
a LinkedList?), pre- and post- conditions around meth-
ods (is the method parameter age greater than zero?), rela-
tionships between pointers to objects (do these two pointers
point at the same object), conditional breakpoints (if vari-
able n at this point of a program is greater than five, then
stop) etc.

Lencevicius’s work in query-based debugging [6] allows
a programmer to either dynamically (as the program is run-
ning) or statically (as the program’s memory is considered)
verify relationships between objects. For example, the fol-
lowing query will verify if all the nodes in a linked list point
to different elements:

// Types required by the expression
Link* l1, l2;
// Relationship to verify.
l1.element != l2.element;

Lencevicius implemented a static query-based debugger
in Self that evaluates a query by going through all the ob-
jects present inside the system as the query is executed. The
dynamic query-based debugger accepted queries that were
verified as a Java program was running and the user was
notified in case when the program invalidated a query.

In his book, Lencevicius summarised the major kinds of
queries that he encountered in his analysis. These included
querying whether an object belongs to some collection or
a number of collections, querying and comparing the val-
ues of fields of different objects (e.g. size), searching
for duplicate pointers in linked data structures, and study-
ing chains of references between objects.

This work clearly demonstrated the advantage of hav-
ing a flexible query language that can be used to specify
the inter-object relationships that a programmer wishes to
verify. Unfortunately, the dynamic verification of queries
requires a substantial extension of the Java Virtual Machine
and the range of queries is limited so that dynamic moni-
toring would not slow down program’s execution by a large
factor. This makes this approach impractical for a detailed
examination of the state of a large program.

The Object Constraints Language (OCL) C++ debugger
by Hobatr and Malloy [4] allowed a user to specify the
constraints on the functions using OCL to be validated as
a C++ program runs. The constraints were translated into
C++ code so that a program can print an error message ev-
ery time a query expressed in OCL is invalidated. Again,
this approach required transformation of a C++ program

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

and significant execution overhead, making this impractical
for general-purpose debugging.

This and other approaches to debugging, for example
conditional breakpoints that pause program’s execution if
a certain boolean expression is false, attempt to provide a
programmer with a way to deal with complexity arising in
modern programs that obscures the causes of errors.

3 Snapshot-Based Query-Based Debugging

In this paper we introduce a general purpose snapshot
query-based debugger called Fox. Unlike other query-based
debuggers, the main contribution of Fox is that it supports
queries over standard heap snapshots. Basically, you can
think of this approach as pausing a program and studying
its state in great detail to look for causes of program be-
haviour using all the information available. This makes it
instantly usable by anyone using Sun’s Java Development
Kit [14] and does not require any changes to the programs
being examined.

The argument of this paper is that applying query-based
debugging techniques to heap snapshots with instantaneous
but complete information about the heap, allows access to
information not available to standard debuggers but without
the program transformations, virtual machine support, and
execution overheads required by other query-based debug-
gers.

3.1 The Fox Query Language

The study of object graphs is about objects, hence the
central concept underlying Fox Query Language (FQL) is
the heap object. We access information about each object
by accessing its properties. Thus, for each heap object we
calculate a number of properties and store them together
inside a large table so that it can be closely examined by a
user.

We extend our analogy with a common database by al-
lowing selection of objects from the table corresponding to
a heap’s snapshot in a manner similar to the SELECT ...
WHERE statement in the Structured Query Language (SQL).
We refer to the selection part of our query language as fil-
ters. Filters allow us to restrict the objects to those meeting
a number of constraints on their properties.

Finally, to allow the user to utilise the information avail-
able to them, we provide a number of queries that can be run
upon different sets of objects returned by filters. Queries
include standard operations such as counting the objects
or finding a minimum or a maximum value of a particu-
lar property, control queries that are designed to be inserted
into scripts to tell Fox when to load another heap snapshot
or when to save the results, and interactive queries that are
used in real time.

Figure 2 gives a visual example of how a typical query
works together with filters and properties. As can be seen
from the figure, Fox manipulates sets of objects before ar-
riving at a final set that is supplied to a query being per-
formed. In the rest of this section, we address the three fun-
damental concepts of FQL: properties, filters, and queries.

Figure 2. How queries, filters, and properties
fit together

3.2 Properties

Most information about an object is recorded in its prop-
erties. Each property has a type and can be used in filters
and queries as appropriate. In particular, the pField prop-
erty used to access the values of fields of primitive type
can be any of the following Java types: boolean, byte,
char, double, float, int, long, or short.

Some properties are calculated by Fox as the heap snap-
shot is loaded. These include a pID (object’s unique ID)
and pClassName (object’s class name) that come from
the heap itself as they are intrinsic to the objects when
used by the garbage collector inside the Java Virtual Ma-

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Filter Syntax
fSnapshot(); This filter represents all the objects in the heap snapshot.
fBooleanProperty("<PROPERTY>", [true | false], <FILTER>);
This selects objects from those that pass a given filter and have a given property being either true or false as given.
fIntProperty("<PROPERTY>", [=, !=, >, <, >=, <=] [0-9]+, <FILTER>);
From objects passing a given filter, this selects those which have a property of the right type passing the comparison.
In place of Int we can also use Byte, Short, or Long.
fCharProperty("<PROPERTY>", [=, !=] <char symbol>, <FILTER>);
From objects passing a given filter, this selects those with a given character property passing the comparison.
fDoubleProperty("<PROPERTY>", [>, <] [0-9]+[.][0-9]*, <FILTER>);
Returns objects which have a property passing a comparison given (Double can be replaced with Float).
fStringProperty("<PROPERTY>", <user string>, <FILTER>);
From objects passing a given filter, this selects those with a given string property being equal to a given string.
fUnion / fIntersection / fMinus (<FILTER>, <FILTER>);
Selects the objects from those passing two filters given and returns union, intersection, or difference of the two sets.
fRefersTo(<FILTER>); fReferrers(<FILTER>);
These filters select objects that those passing the filter point to (refers to) or those that point to them (referrers).
fField("<reference type field name>", <FILTER>);
This selects an object pointed at by a given field, or in case when it is an object array — all the objects that are in it.
fOccurs([=, !=, >, <, >=, <=] [0-9]+, <FILTER>);
Returns a list of objects where each appears only once that occur a given number of times (e.g. > 1 - more than once).
fTraverse(<FILTER: starting>, <FILTER: among>>;
Returns objects traversable from those passing the first filter if only those passing the second one are allowed in the paths.

Table 1. Filters supported by FQL

chine [14]. These are simply read from a heap snapshot file
and recorded appropriately. Most other properties are cal-
culated by Fox.

pID contains an integer ID uniquely identifying an object
inside the heap. (This ID is not guaranteed to be re-
tained by the virtual machine once the object was de-
stroyed, thus its use for tracking an object through mul-
tiple heap snapshots should be restricted.)

pClassName contains a string with a full class name of
an object.

pNumberOfIncomingReferences contains an inte-
ger that stores the number of objects that have a pointer
to a current object.

pNumberOfOutgoingReferences contains an inte-
ger that stores the number of objects that the current
object points to.

pIsField is a boolean value that is true if there is some
object on the heap that stores a pointer to the current
object in one of its fields.

pField("<primitive type field name>")
this can be used to access the values of primitive type
fields stored inside the current object. If the value is

a primitive type, the property has that type, otherwise
this will cause Fox to refuse to parse this property. To
refer to the fields pointing to other objects, we can use
an appropriate filter, described in the next subsection.

3.3 Filters

For some queries it is more useful to work with only
part of the heap snapshot, thus FQL requires some filter-
ing ability. We introduce the concept of filters that are de-
signed to be put together so that output of one filter serves
as input to another filter. There is a special filter called
fSnapshot() that can be used as input to other filters
that returns all the objects in memory graph.

The core of the filter part of FQL lies in
fBooleanProperty, fByteProperty, fChar-
Property, fDoubleProperty, fFloatProperty,
fIntProperty, fLongProperty, and fShort-
Property filters. These respectively select objects based
on the restrictions to their properties, which are of the
corresponding type. Additional filters include fUnion,
fIntersection, and fMinus which accept two input
filters and return objects in correspondingly union, inter-
section, or set difference of the sets returned by the input
filters. To enable a user to easily refer to the objects that
directly refer to the set of objects in question, or that the

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Query Syntax
qCount("<FILTER>");
qCountPerClass("<FILTER>");
This query simply counts and returns the number of objects passing a given filter.
qAverage("<FILTER>", "<PROPERTY>");
qAveragePerClass("<FILTER>", "<PROPERTY>");
This query accepts an integer property and calculates the average of its value across the objects passing a filter.
qMaximum("<FILTER>", "<PROPERTY>");
qMaximumPerClass("<FILTER>", "<PROPERTY>");
This query accepts an integer property and finds the maximum of its value across the objects passing a filter.
qMinimum("<FILTER>", "<PROPERTY>");
qMinimumPerClass("<FILTER>", "<PROPERTY>");
This query accepts an integer property and finds the minimum of its value across the objects passing a filter.
qPercentage("<FILTER>");
qPercentagePerClass("<FILTER>");
This query calculates what percentage of all the objects in the heap snapshot pass the filter.

Table 2. Standard queries supported by FQL. Note that in case of the per class version of a query, the
results for all the instances of the same class for each class will be presented.

current set of objects refers to, we introduced fRefersTo
and fReferrers.

Filter fField allows us to refer to the objects that are
pointed at by a particular field of an object or objects re-
turned by the input filter. In the case when the field refers
to an object array, all the objects in it are returned. Filter
fOccurs allows the selection of objects that occur more
than once in the list returned by the input filter.

Finally, filter fTraverse allows us to find the objects
traversable from a given set of objects if we only examine
objects which pass the second filter given as a parameter. It
will start with object(s) returned by the first filter and tra-
verse their children only if they are among the objects con-
tained in the second filter. Notice that this is different from
a query asking for reachable objects, that can take a long
time on even typically sized heap snapshots. For example,
it will ignore any outgoing reference that doesn’t match the
second filter, even if that path will eventually reach an ob-
ject of a valid type. Specifying the second parameter to be
fSnapshot makes this query return a valid set of reach-
able objects. An example that utilises this query is given in
section 4.

Table 1 describes the filters supported by FQL. The rea-
son behind a somewhat cumbersome syntax is the ease with
which filters can be parsed and the way it allows a user to
be sure that they are supplying values of the right type.

3.4 Queries

Queries are where all the work is coordinated. There are
several kinds of queries: standard queries similar to the ones

that can be found in SQL, control queries that tell Fox which
heap snapshot to load or where to save the results obtained
so far, and a set of interactive queries designed for the user
to explore the snapshot in a lot more detail.

The standard queries are also expanded to return a per
class version, where the results are reported with respect to
the instances of the same class only. For example, the av-
erage number of outgoing references across all objects can
be two, while the average number of outgoing references
across the objects of class HashtableEntry[] (array)
can be a lot higher. The per class versions of queries return
as many results as there are classes used in a heap snapshot.

Like most SQL implementations, FQL allows one to
count the objects that meet a particular restriction, find the
maximum or the minimum of some value across the objects,
or to find which percentage of objects pass a given combi-
nation of filters with respect to the whole memory graph.
Every query accepts a combination of filters as the first pa-
rameter. qCount and qPercentage queries then pro-
ceed to count the object that pass a given filter combination.
The qAverage, qMaximum, and qMinimum queries also
accept a second parameter with the property that they base
their calculations upon. Table 2 lists standard queries to-
gether with their per-class versions.

Control queries are the kinds of queries that can be pro-
vided in the user interface. They include the commands to
load a heap snapshot (qLoadHeapSnapshot), save the
current contents of the window with the results of running
the queries (qSaveResults), and clear the contents of
the results window (qClearResults). The reason for
providing this queries in addition to the user interface con-

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

Query Syntax
qLoadHeapSnapshot("/path/to/the/heap/snapshot.hprof");
Loads a heap snapshot stored in a file given, which is obtained using the HPROF library [15].
qSaveResults("/path/to/the/results/file.txt", [true | false]);
Saves the results to a file given; second parameter specifies whether this query is allowed to overwrite it.
qClearResults();
Clears the window with the results; useful in combination with QSaveResults query.
qHelp();
Lists all the properties, filters, and queries supported by the tool with syntax and type information.
qHAT([port number]);
Starts a server using the HAT library [1] to allow the use of any web browser to traverse the memory graph.
qProperties("<FILTER>", ["<PROPERTY>"]*);
This query is used to produce a comma-separated list of property values of all the objects passing the filter. This
result can be saved into a CSV file and loaded into a spreadsheet program such as MS Excel or GNUmeric for further
analysis. Most of the more detailed analysis we performed was done using this query together with MS Excel.
qShow("<FILTER>");
This query is used to produce a brief, nicely formatted textual description of the objects passing the
filter. It is only useful when there are only a few (less than a dozen) objects involved.

Table 3. Control and interactive queries supported by FQL

trols is to allow the user to write a reasonably long script
using FQL that can be executed by Fox over an extended
period of time. This script can go through a large number
of heap snapshots, load each of them, process and save the
results in different locations for further analysis by the user.
These queries are listed in table 3.

The final category of queries are the interactive queries
that are designed to be used when a user wants to closely
examine a particular snapshot themseves, rather than letting
Fox run in a batch mode. They include a help command
(qHelp), a query to traverse the memory graph of objects
using HAT [1] that will serve them on a given port for the
user to use any web browser to explore it (qHAT), and a
command to show a user readable description of a single
object (qShow). These are described in table 3.

There are also special queries qProperties and
qShow presented in table 3. qProperties doesn’t have
to be used interactively: it is designed to simply output
a comma separated list of property values for all the ob-
jects passing a given filter. Only properties supplied as ar-
guments will be displayed. We were using this query ex-
tensively to study distributions of various properties of ob-
jects using spreadsheets. qShow is a simplified version of
qProperties that can be used as a shortcut to display
nicely formatted information about (hopefully few) objects
returned by the filter.

4 Examples

In this section we would like to present some examples
of using a query language to debug and examine a heap
snapshot. Each example tries to briefly explain the thought
process used to arrive at a particular query.

4.1 Selection Based on Field Values

This example reports the percentage of instances of an
Employee class in a Java-based payroll application that
have a value stored in the integer field salary greater than
$50, 000 and the integer field age smaller than 20.

When building up any Fox query from scratch, we
start by thinking about all the objects in the object graph
(returned by fSnapshot() query). In this case, we
first restrict our attention to those objects are instances of
Employee class:

fStringProperty("pClassName",
"Employee", fSnapshot())

Then we impose two further restrictions (age and salary)
as follows:

fIntProperty("pField("age")", < 20,
fIntProperty("pField("salary")",

> 50000, ...))

Finally, we run a qPercentagePerClass query that
will tell us what percentage of these Employee objects
meet our restriction. The whole query is:

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

qPercentagePerClass("fIntProperty(
"pField("age")", <20, fIntProperty(
"pField("salary")", >50000,

fStringProperty("pClassName",
"Employee",
fSnapshot())))");

4.2 Examining a Collection

This example reports the number of linked list Links
that store an object of type Student. Again, we restrict
our attention to the objects of class Link and then we cal-
culate the set of objects constituted by those pointed at via
the field element of class Link:

fField("element", fStringProperty(
"pClassName", "Link", fSnapshot()))

Among these objects, we select those that are instances
of class Student and we count them:

qCount("fStringProperty("pClassName",
"Student", fField("element",

fStringProperty("pClassName",
"Link", fSnapshot())))");

4.3 Searching for Linked Data Structure Bugs

This example finds the number of objects pointed at by
the same linked list Links via the field next. This can be
used to detect errors in a program that cause broken linked
lists. First we select those objects pointed by a field next
among the instances of class Link:

fField("next", fStringProperty(
"pClassName", "Link", fSnapshot()))

Then, we use a filter fOccurs to count only those
objects that occure more than once in our list of objects
pointed to by the field next:

qCount("fOccurs(> 1, fField("next",
fStringProperty("pClassName",

"Link", fSnapshot())))");

4.4 Debugging a Data Structure

This example examines the field size of an instance
of BinaryTree data structure implemented by using a
BinaryNode class (the topmost node stored in a field
root of BinaryTree) to represent its nodes and checks
if it indeed matches the number of nodes in the data struc-
ture. It relies heavily of fTraverse filter.

We can first look up the values of a field size for the
instances of BinaryTree as follows:

qProperties("fStringProperty(
"pClassName", "BinaryTree",

fSnapshot())",
"pID", "pField("size")");

Then, for each ID that we get we can run a query that
counts the number of BinaryNode instances that a given
BinaryTree instance can reach. The results an be com-
pared with the value of the field size by exporting them to
a spreadsheet program.

Before we can use fTraverse filter, we need to find
the root object of the binary tree, stored in the root field:

fField("root", fIntProperty("pID", ID,
fSnapshot()))

Then we start at this object, traverse downwards through
objects of type BinaryNode and count them:

qCount("fTraverse(...), fStringProperty(
"pClassName", "BinaryNode",

fSnapshot()))");

4.5 Discovering a Singleton Bug

This example assumes that we have a class that is only
allowed to have a single instance present inside any running
program. The following is one of many singleton classes in
javac compiler source:

public class Resolve {
public static Resolve
instance(Context context) { ... }

...
}

One of the possibilities that a Snapshot-based Query-
Based Debugger offers is verifying that during the execu-
tion of a program there is only one instance of such class
present.

fStringProperty{"pClassName",
"Resolve", fSnapshot())

The above gives us access to all the instances of class
Resolve that can be counted to make sure that there is
only one of them.

qCount(fStringProperty{"pClassName",
"Resolve", fSnapshot())

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

5 Related Work

Object graphs have been examined using a variety of
methods which include: using traditional debuggers [16];
viewing the contents of the heap in detail [1]; examining
a series of consecutive heap snapshots of a program run to
help debug errors automatically [17]; and analysing heap
snapshots in detail to try and find places where there is a
high probability of memory leaks [8] or profiling execution
behaviour in detail [5].

5.1 HOWCOME and Delta Debugging

HOWCOME is a cause-effect gap detector written by
Zeller [17]. It constitutes a part of the work on the Delta
Debugging Project [18].

The problem with most bugs inside programs is that the
cause of an error may have happened long before the ef-
fect of an error is discovered. Zeller proposes to track the
changes in the program’s memory graph in the steps preced-
ing the error being detected to recover the parts of the pro-
gram relevant to the error, thus narrowing down the cause
of the error without any intervention by the programmer:

Consider the execution of a failing program as
a series of program states consisting of variables
and their values. Each state induces the following
state, up to the failure. Which part of a program is
relevant to failure? We show how Delta Debug-
ging algorithm isolates the relevant variables and
values by systematically narrowing the state dif-
ference between a passing run and a failing run.

5.2 Leakbot and Jinsight

Leakbot [8] was developed as part of the Jinsight project
at IBM Research and it provides a user with a semi-
automated way of detecting memory leaks. It takes an ob-
ject graph snapshot of a running program and creates an
ownership tree to be able to rate each object (based on its
position inside the ownership tree and a number of other
factors) with respect to its potential to become a memory
leak.

Jinsight [5] is written by IBM Research and allows a de-
tailed post-mortem analysis of a Java program. It traces all
object creations and destructions, method calls, memory us-
age and more. The results of program monitoring are stored
in a file and can be visualised and analysed using a graphic
analysis program that comes as part of it.

Leakbot and Jinsight clearly show the advantage of hav-
ing a complete information about the current state of the
program, to be able to perform a thorough analysis.

5.3 Other Approaches

Kacheck/J [2] is designed to analyse a large number of
Java classes and derive which ones of them are confined
to their defining packages and which ones are not. It is a
command line tool written in Java which accepts a path to
the source base of class files corresponding to the program
we wish to analyse for confinement. As the result, it will
report which classes are guaranteed to have no references to
them from outside of their defining package throughout all
possible lifetimes of the program. In addition, this tool can
display which parts of the code violate confinement so that
the program can be changed accordingly if necessary.

DINO is a tool devloped by Trent Hill [3] that visualised
an ownership tree — a structure derived from the object
graph used in the aliasing research. One of the issues en-
countered during the development of DINO was inability
to visualise every single object that exists during the exe-
cution of a program, because of the vast number of them.
Hence, DINO allows the user to concentrate only on the
user-created objects that are relevant to the code being ex-
ecuted, and avoid looking at the internal processes inside
system libraries which may or may not have an adverse ef-
fect on the code in question.

6 Discussion and Future Work

To summarise the main idea, although the best approach
would be to dynamically analyse the behaviour of a pro-
gram in real time, this is not feasible in current computing
environments. Statically analysing heap snapshots in de-
tail allows us to have access to complete information about
a program’s state. Although this approach is optimistic —
the state of a program changes, as it moves on from the
time the snapshot is taken — in practice we and other re-
searchers working with snapshots found that generally the
information about the inter-object relationships is stable.

From our experience with Fox, the main drawback is
the syntax of FQL. We are currently designing a much
more user-friendly version that will replace it. For ex-
ample to find the number of instances Link l where
l.next.prev != l, we will form the following query:

fox> #(Link l | l.next.prev != l);

The timing of when a heap snapshot is taken directly af-
fects whether we are able to “catch” a particular state that
we want to examine in detail. If we don’t have access to
the program’s source code, we can can only produce heap
snapshots at the point of time when a user thinks is reason-
able. It is more useful to insert a line of code in the Java
source that tells a virtual machine to produce a heap snap-
shot. This capability was not implemented at the time of

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

writing, because we chose instead to insert a simple call to
System.sleep() to make it easy to dump a heap snap-
shot manually when the program pauses.

We are also planning to use BeanShell [9] to allow a user
to execute methods upon the objects inside the heap snap-
shot. To implement this, we can dynamically recreate the
program with BeanShell using the information stored in a
heap snapshot.

Finally, we plan to release Fox into the open source com-
munity once it is ready. So far, a small web page was set
up at: http://www.mcs.vuw.ac.nz/˜alex/fox/
that contains a link to download the latest stable version.
We welcome any requests from people who would like to
obtain the source.

7 Conclusion

In this paper we describe a novel approach to debugging
object-oriented programs. Snapshot query-based debuggers
provide a query language that can be used to study snap-
shots of running programs in detail. This approach is sim-
ple and does not require any modifications to the run time
environment of programs being examined. It is possible to
use such a debugger on any project without any interfer-
ence with the development practice. Fox has already proven
useful in a number of projects, including the development
of Fox itself and a Java-based compiler project Oh! Gee!
Java! [12, 13].

Acknowledgements

This work is supported in part by the Royal Society of
New Zealand Marsden Fund.

References

[1] B. Foote. Heap analysis tool.
http://java.sun.com/people/billf/heap/,
2002.

[2] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating ob-
jects with confined types. In Proceedings of Conference
on Object-Oriented Programming, Languages, and Appli-
cations. ACM Press, 2001.

[3] T. Hill, J. Noble, and J. Potter. Scalable visualisations with
ownership trees. In Proceedings of TOOLS Pacific 2000,
Sydney, Australia, 2000. IEEE CS Press.

[4] C. Hobatr and B. A. Malloy. The design of OCL query-
based debugger for C++. In Proceedings of the 16th ACM
SAC2001 Symposium on Applied Computing, 2001.

[5] IBM AlphaWorks. Jinsight. Available at:
http://www.alphaworks.ibm.com/tech/jinsight/,
2003.

[6] R. Lencevicius. Advanced Debugging Methods. Kluwer
Academic Publishers, August 2000.

[7] Microsoft. The .NET Common Language Runtime.
http://msdn.microsoft.com/net/, 2003.

[8] N. Mitchell and G. Sevitsky. Leakbot: An automated and
lightweight tool for diagnosing memory leaks in large java
applications. In European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer Sci-
ence. Springer-Verlag, July 2003.

[9] P. Niemeyer and D. Leuck. BeanShell — Lightweight
Scripting for Java. http://www.beanshell.org/,
2003.

[10] A. Potanin, J. Noble, and R. Biddle. The fox — a tool for ob-
ject graph analysis. Technical Report CS-TR-03/15, School
of Mathematical and Computing Sciences, Victoria Univer-
sity of Wellington, 2003.

[11] A. Potanin, J. Noble, and R. Biddle. Checking ownership
and confinement. Concurrency and Computation: Practice
and Experience, 2004. Accepted for Publication.

[12] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Feath-
erweight generic confinement. In Foundations of Object-
oriented Programming (FOOL11), Venice, Italy, January
2004.

[13] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic own-
ership. In European Conference on Object-Oriented Pro-
gramming (ECOOP), 2004. Submitted for publication.

[14] Sun Microsystems. Java development kit.
http://java.sun.com/j2se/, 2002.

[15] Sun Microsystems. Java virtual machine profiler interface.
http://java.sun.com/j2se/1.4.1/docs/guide/jvmpi/,
2002.

[16] A. Zeller. Data display debugger.
http://www.gnu.org/software/ddd/.

[17] A. Zeller. Isolating cause-effect chains from computer pro-
grams. In ACM SIGSOFT 10th International Symposium on
the Foundations of Software Engineering (FSE-10), 2002.

[18] A. Zeller. Delta debugging.
http://www.st.cs.uni-sb.de/dd/, 2003.

[19] T. Zimmermann and A. Zeller. Visualizing memory graphs.
In Software Visualization, volume LNCS 2269 of Lec-
ture Notes in Computer Science, pages 191–204. Springer-
Verlag, May 2001.

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04)
1530-0803/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

