
Pipit on the Post: Proving Pre- and1

Post-conditions of Reactive Systems2

Amos Robinson #�3

Australian National University, Canberra, Australia4

Alex Potanin # �5

Australian National University, Canberra, Australia6

Abstract7

Reactive languages such as Lustre and Scade are used to implement safety-critical control systems;8

proving such programs correct and having the proved properties apply to the compiled code is9

therefore equally critical. We introduce Pipit, a small reactive language embedded in F⋆, designed10

for verifying control systems and executing them in real-time. Pipit includes a verified translation11

to transition systems; by reusing F⋆’s existing proof automation, certain safety properties can be12

automatically proved by k-induction on the transition system. Pipit can also generate executable13

code in a subset of F⋆ which is suitable for compilation and real-time execution on embedded devices.14

The executable code is deterministic and total and preserves the semantics of the original program.15

2012 ACM Subject Classification Computer systems organization → Real-time languages; Theory16

of computation → Program verification; Software and its engineering → Specialized application17

languages18

Keywords and phrases Lustre, streaming, reactive, verification19

1 Introduction20

Safety-critical control systems, such as the anti-lock braking systems that are present in21

most cars today, need to be correct and execute in real-time. One approach, favoured by22

parts of the aerospace industry, is to implement the controllers in a high-level language23

such as Lustre [10] or Scade [13], and verify that the implementations satisfy the high-level24

specification using a model-checker, such as Kind2 [11]. These model-checkers can prove25

many interesting safety properties automatically, but do not provide many options for manual26

proofs when the automated proof techniques fail. Additionally, the semantics used by the27

model-checker may not match the semantics of the compiled code, in which case properties28

proved do not necessarily hold on the real system. This mismatch may occur even when the29

compiler has been verified to be correct, as in the case of Vélus [5]. For example, in Vélus,30

integer division rounds towards zero, matching the semantics of C; however, integer division31

in Kind2 rounds to negative infinity, matching SMT-lib [2, 25].32

To be confident that our proofs hold on the real system, we need a single semantics that33

is shared between the compiler and the model-checker or prover. In this paper we introduce34

Pipit1, an embedded domain-specific language for implementing and verifying controllers35

in F⋆. Pipit aims to provide a high-level language based on Lustre, while reusing F⋆’s36

proof automation and manual proofs for verifying controllers [31], and using Low⋆’s C-code37

generation for real-time execution [34]. To verify programs, Pipit translates its expression38

language to a transition system for k-inductive proofs, which is verified to be an abstraction39

of the original semantics. To execute programs, Pipit can generate executable code, which is40

total and semantics-preserving.41

In this paper, we make the following contributions:42

1 Implementation available at https://github.com/songlarknet/pipit

mailto:amos.robinson@anu.edu.au
https://orcid.org/0009-0004-4837-4981
mailto:alex.potanin@anu.edu.au
https://orcid.org/0000-0002-4242-2725
https://github.com/songlarknet/pipit

2 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

we motivate the need to combine manual and automated proofs of reactive systems with43

a strong specification language (Section 2);44

we introduce Pipit, a minimal reactive language that supports rely-guarantee contracts45

and properties; crucially, proof obligations are annotated with a status — valid or deferred46

— allowing proofs to be delayed until more is known of the program context (Section 3);47

we describe a checked semantics for Pipit, which is parameterised by the property status;48

after checking deferred properties, programs can be blessed, and their properties lifted to49

valid status (Subsection 3.2);50

we describe an encoding of transition systems that can express under-specified rely-51

guarantee contracts as functions rather than relations; composing functions results in52

simpler transition systems (Section 4);53

we identify the invariants and lemmas required to prove that the abstract transition54

system is an abstraction of the original semantics (Subsection 3.3, Subsection 4.1);55

similarly, we offer a mechanised proof that the executable transition system preserves the56

original semantics (Section 5);57

finally, we evaluate Pipit by implementing the high-level logic of a time-triggered Controller58

Area Network (CAN) bus driver, which we have partially verified (Section 6).59

2 Pipit for time-triggered networks60

To introduce Pipit, we consider a driver with a static schedule of triggers, or actions to be61

performed at a particular time; this driver is a simplification of the time-triggered Controller62

Area Network (CAN) bus specification [15] which we will discuss further in Section 6.63

2.1 Deferring and proving properties64

The schedule of our time-triggered driver is determined by a constant array of triggers, sorted65

by their associated time-mark. The driver maintains an index that refers to the current66

trigger. At each instant in time, the driver checks if the current trigger has expired or67

is inactive, and if so, it increments the index. We first implement a streaming function68

count_when to maintain the index; the function takes a constant natural number max and a69

stream of booleans inc. At each time step, count_when checks whether the current increment70

flag is true; if so, it increments the previous counter, saturating at the maximum; otherwise,71

it leaves the previous counter as-is.72

let count_when (max: N) (inc: stream B): stream N =
rec count.

check□? (0 ≤ count ≤ max);
let count’ = (0 fby count) + (if inc then 1 else 0) in
if count’ ≥ max then max else count’

The implementation of count_when first defines a recursive stream, count, which states73

an invariant about the count before defining the incremented stream count’. Inside count’,74

the syntax 0 fby count is read as “the initial value of zero followed by the previous count”.75

The syntax check□? (0 ≤ count ≤ max) asserts that the count is within the range [0, max].76

The subscript □? on the check is the property status, which in this case denotes that the77

assertion has been stated, but it is not yet known whether it holds. A property status of78

□✓ , on the other hand, denotes that a property has been proved to hold. These property79

statuses are used to defer checking properties until enough is known about the environment,80

A. Robinson and A. Potanin 3

and to avoid rechecking properties that have already been proven. In practice, the user81

does not explicitly specify property statuses in the source language. The stated property82

(0 ≤ count ≤ max) is a stream of booleans which must always be true. Non-streaming83

operations such as ≤ are implicitly lifted to streaming operations, and non-streaming values84

such as 0 and max are implicitly lifted to constant streams.85

We defer the proof of the property here because, at the point of stating the property86

inside the rec combinator, we don’t yet have a concrete definition for the count variable.87

In this case, we could have instead deferred the statement of the property by introducing88

a let-binding for the recursive count and putting the check outside of the rec combinator.89

However, it is not always possible to defer property statements: for example, when calling90

other streaming functions that have their own preconditions, it may not be possible to move91

the function call outside of its enclosing rec.92

Pipit is an embedded domain-specific language. The program above is really syntactic93

sugar for an F⋆ program that takes a natural number and constructs a Pipit core expression94

with a free boolean variable. We will discuss the details of the core language in Section 3,95

but for now we focus on the source program with some minor embedding details omitted.96

To actually prove the property above, we use the meta-language F⋆’s tactics to translate97

the program into a transition system and prove the property inductively on the system.98

Finally, we bless the expression, which marks the properties as valid ([□? := □✓]). Blessing is99

an intensional operation: it traverses the expression and updates the internal metadata, but100

it does not affect the runtime semantics.101

let count_when□✓ (max: N): stream B → stream N =
let system = System.translate1(count_when max) in
assert (System.inductive_check system) by (pipit_simplify ());
bless1 (count_when max)

The subscript 1 in the translation to transition system and blessing operations refers102

to the fact that the stream function has one stream parameter. The pipit_simplify tactic103

in the assertion performs normalisation-by-evaluation to simplify away the translation to a104

first-order transition system; F⋆’s proof-by-SMT can then solve the inductive check directly.105

Callers of count_when can now use the validated variant without needing to re-prove106

the count-range property. In a dedicated model-checker such as Kind2 [11] or Lesar [35],107

this kind of bookkeeping would all be performed under-the-hood. By embedding Pipit in a108

general-purpose theorem prover, we move some of the bookkeeping burden onto the user;109

however, we have increased confidence that the compiled code matches the verified code and,110

as we shall see, we also have access to a rich specification language.111

2.2 The time-triggered system matrix112

The schedule of the time-triggered network is abstractly described by a system matrix,113

consisting of rows of basic cycles, columns of transmission columns, and cells of optional114

messages. Each basic cycle is identified by its cycle index and each transmission column has115

an associated time-mark.116

Figure 1 (left) shows an example system matrix with cycles C0 and C1 and transmission117

columns at time-marks 0, 1 and 2. For this example, we assume that one message can be sent118

per clock cycle. To execute this system matrix, we synchronise the local time to zero at the119

start of basic cycle C0. After a basic cycle completes, the nodes on the network synchronise120

before execution continues to the next basic cycle.121

4 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

TM0 TM1 TM2
C0 MSG A MSG B -
C1 MSG A - MSG C

0: { time_mark = 0; enabled = {C0,C1}; msg = A; }
1: { time_mark = 1; enabled = {C0}; msg = B; }
2: { time_mark = 2; enabled = {C1}; msg = C; }

Figure 1 Left: system matrix; right: corresponding triggers array configuration

Figure 1 (right) shows the corresponding configuration for the triggers array. The enabled122

set denotes the basic cycles for which a trigger is active.123

The system has strict timing requirements which restrict how triggers can be defined. In124

this example, each trigger has a unique time; in general, trigger times can overlap, but they125

need to be enabled on distinct cycles. Additionally, the schedule must allow sufficient time126

for the driver to skip over the disabled triggers. Concretely, we could postpone trigger 1 to127

send message B at time-mark 2, as triggers 1 and 2 have distinct cycles. However, we could128

not bring forward trigger 2 to send message C at time-mark 1: the driver can only process129

one trigger per tick, and it takes two steps to reach trigger 2 from the start of the array.130

We impose three main restrictions on the triggers array: the time-marks must be sorted;131

there must be an adequate time-gap between any two triggers that are enabled on the same132

cycle index; and each trigger’s time-mark must be greater-than-or-equal to its index.133

With these restrictions in place, we prove a lemma lemma_can_reach_next, which states134

that for all valid cycle indices and trigger indices, if the current trigger is enabled in the135

current cycle and there is another enabled trigger scheduled to occur somewhere in the array136

after the current one, then there is an adequate time-gap to allow the driver to skip over any137

disabled triggers in-between. These properties are straightforward in a theorem prover, but138

would be difficult to state in a model-checker with a limited specification language.139

2.3 Instantiating lemmas and defining contracts140

We can now implement the trigger-fetch logic, which keeps track of the current trigger. The141

trigger-fetch logic uses the count_when streaming function to define the index of the current142

trigger; we tell count_when to increment the index whenever the previous index has expired143

or is inactive in the current basic cycle. We simplify our presentation here and only consider144

a single cycle in isolation: the real system presented in Section 6 has some extra complexity145

such as resetting the index, incrementing the cycle index at the start of a new cycle, and146

using machine integers.147

let trigger_fetch (cycle: N) (time: stream N): stream N =
rec index.

let inc = false fby ((time_mark index) ≤ time ∨ ¬(enabled index cycle)) in
let index = count_when□✓ trigger_count inc in
pose1 (lemma_can_reach_next cycle) index;
check□? (can_reach_next_active cycle time index);
index

The trigger_fetch function takes a static cycle index and a stream denoting the current148

time. The increment flag and the index are mutually dependent — the increment flag depends149

on the previous value of the index, while the index depends on the current value of the150

increment flag — so we introduce a recursive stream for the index. We allow the index to go151

one past the end of the array to denote that there are no more triggers.152

We use the pose1 helper function to lift the lemma_can_reach_next lemma to a streaming153

context and instantiate it; the subscript 1 indicates that the lemma is being applied to154

A. Robinson and A. Potanin 5

one streaming argument (the index). We then state an invariant as a deferred property.155

Informally, the invariant states that, either the current active trigger is not late, or the next156

active trigger after the current index is in the future and we can reach it in time.157

With the explicitly instantiated lemma, we can prove the streaming invariant by straight-158

forward induction on the transition system. To help compose this function with the rest of159

the system, we also abstract over the details of the trigger-fetch mechanism by introducing a160

rely-guarantee contract for trigger_fetch. The contract we state is that if the environment161

ensures that the time doesn’t skip — that is, we are called once per microsecond — then we162

guarantee that we never encounter a late trigger.163

let trigger_fetch□✓ (cycle: N): stream N → stream N =
let contract = Contract.contract_of_stream1 {

rely = (λtime. time_no_skips time)
guar = (λtime index. (index_valid index ∧ enabled index cycle)

=⇒ (time_mark index) ≥ time)
body = (λtime. trigger_fetch cycle time)

} in
assert (Contract.inductive_check contract) by (pipit_simplify ());
Contract.stream_of_contract1 contract

In the implementation of the validated variant of trigger_fetch, we first construct the164

contract from streaming functions. The Contract.contract_of_stream1 combinator describes165

a contract with one input (the time stream), and takes stream transformers for each of the166

rely, guarantee and body. The combinator transforms the surface syntax into core expressions.167

The assertion (Contract.inductive_check contract) then translates the expressions into a168

transition system, and checks that if the rely always holds then the guarantee always holds,169

and that the as-yet-unchecked subproperties hold. Finally, Contract.stream_of_contract1170

blesses the core expression and converts it back to a stream transformer, so it can be easily171

used by other parts of the program.172

When this function is used in other parts of the program, the caller must ensure that173

the environment satisfies the rely clause. In the core language, this is tracked by another174

deferred property status attached to the contract; we will discuss this further in Section 3.175

3 Core language176

We now introduce the core Pipit language. Note that this form differs slightly from the177

surface syntax presented earlier in Section 2, which used the syntax of the metalanguage F⋆,178

as well as including proofs in F⋆ itself.179

Figure 2 defines the grammar of Pipit. The expression form e includes standard syntax for180

values (v), variables (x) and primitive applications (p(e)). Most of the expression forms were181

introduced informally in Section 2 and correspond to the clock-free expressions of Lustre [10].182

The expression syntax for delayed streams (v fby e) denotes the previous value of the183

stream e, with an initial value of v when there is no previous value.184

Recursive streams, which can refer to previous values of the stream itself, are defined using185

the fixpoint operator (rec x. e[x]); the syntax e[x] means that the variable x can occur in e.186

As in Lustre, recursive streams can only refer to their previous values and must be guarded187

by a delay: the stream (rec x. 0 fby (x + 1)) is well-defined, but stream (rec x. x + 1) is188

invalid and has no computational interpretation. This form of recursion differs slightly from189

standard Lustre, which uses a set of mutually-recursive bindings. Although we cannot express190

6 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

e, e′ := v | x | p(e) (values, variables and operations)
| v fby e | rec x. e[x] (delayed and recursive streams)
| let x = e in e′[x] (let-expressions)
| checkπ eprop (checked properties)
| contractπ {erely} ebody {x. eguar[x]} (rely-guarantee contracts)

v := n ∈ N | b ∈ B | r ∈ R | . . . (values)
p := (+) | (−) | (×) | if-then-else | . . . (primitives)

π := □✓ | □? (property statuses: valid or unknown)

V := · | V ; v (streams of values)
σ := {x 7→ v} (heaps)
Σ := · | Σ; σ (streaming history environments)
τ, τ ′ := N | B | τ × τ | . . . (value types)
Γ := · | x : τ, Γ (type environments)

Figure 2 Pipit core language grammar, which contains expressions e, values v, primitive operations
p, and property statuses π.

mutually-recursive bindings in the core syntax here, we can express them as a notation on191

the surface syntax by combining the bindings together into a single tuple.192

Checked properties and contracts are annotated with their property status π, which can193

either be valid (□✓) or unknown (□?). For checked properies checkπ e, the property status194

denotes whether the property has been proved to be valid.195

Contracts contractπ {erely} ebody {x. eguar[x]} involve two verification conditions. Firstly,196

when a contract is defined, the definer must prove that the body ebody satisfies the contract:197

roughly, if erely is always true, then eguar[x := ebody] is always true. Secondly, when a contract198

is instantiated, the caller must prove that the environment satisfies the precondition: that is,199

erely is always true. Conceptually, then, a contract could have two property statuses: one for200

the definer, and one for the instantiation. However, in practice, it is not useful to defer the201

proof of a contract definition — one could achieve a similar effect by replacing the contract202

with its implementation. For this reason, we only annotate contracts with one property203

status, which denotes whether the instantiation has been proved to satisfy the precondition.204

Streams V are represented as a sequence of values; streaming history environments Σ are205

streams of heaps. Types τ and type environments Γ are standard.206

We define the typing judgments for Pipit in Figure 3. Most of the typing rules are standard207

for an unclocked Lustre. The typing judgment Γ ⊢ e : τ denotes that, in an environment208

of streams Γ, expression e denotes a stream of type τ . This core typing judgment differs209

from the surface syntax used in Section 2, which used an explicit stream type; for the core210

language, we instead assume that everything is a stream.211

For values, we use an auxiliary judgment form prim-value-type(v) = τ to denote that value212

v has type τ . Likewise, for primitives we use the auxiliary judgment form prim-type(p) =213

(τ1 × · · · . . . × τn) → τ ′ to denote that primitive p takes arguments of type τi and returns a214

result of type τ ′. Primitives are pure, non-streaming functions.215

Rules TValue, TVar, TPrim and TLet are standard.216

Rule TFby states that expression v fby e requires both v and e to have equal types; the217

A. Robinson and A. Potanin 7

Γ ⊢ e : τ

prim-value-type(v) = τ

Γ ⊢ v : τ
(TValue)

Γ, x : τ, Γ′ ⊢ x : τ
(TVar)

prim-type(p) = (τ1 × · · · × τn) → τ ′ Γ ⊢ e1 : τ1 . . . Γ ⊢ en : τn

Γ ⊢ p(e) : τ ′ (TPrim)

prim-value-type(v) = τ Γ ⊢ e′ : τ

Γ ⊢ v fby e′ : τ
(TFby) Γ, x : τ ⊢ e : τ

Γ ⊢ rec x. e[x] : τ
(TRec)

Γ ⊢ e : τ Γ, x : τ ⊢ e′ : τ ′

Γ ⊢ let x = e in e′[x] : τ ′ (TLet) Γ ⊢ e : B
Γ ⊢ checkπ e : unit

(TCheck)

Γ ⊢ erely : B Γ ⊢ ebody : τ Γ, x : τ ⊢ eguar : B
Γ ⊢ contractπ {erely} ebody {x. eguar[x]} : τ

(TContract)

Figure 3 Typing rules for Pipit; the judgment Γ ⊢ e : τ denotes that expression e describes
a stream of values of type τ . Two auxiliary judgment forms are used for values and primitive
operations; their rules are standard and are omitted.

result is the same type.218

Rule TRec states that a recursive stream rec x. e has the recursive stream bound inside219

e. The recursion must also be guarded, in that any recursive references to x are delayed, but220

this requirement is performed as a separate syntactic check described in Subsection 3.3.221

Rule TCheck states that statically checking a property checkπ e requires a boolean222

property e and returns unit.223

Finally, rule TContract applies for a contract contractπ {erely} ebody {x. eguar[x]}224

with a body expression of some type τ . The overall expression has result type τ . Both rely225

and guarantee clauses must be boolean expressions. Additionally, the guarantee clause can226

refer to the result value by x.227

3.1 Dynamic semantics228

The dynamic semantics of Pipit are defined in Figure 4. We present our semantics in a229

big-step form. This differs somewhat from traditional reactive semantics of Lustre [10]. Our230

big-step semantics emphasises the equational nature of Pipit, as it is substitution-based,231

while the reactive semantics emphasises the finite-state streaming execution of the system.232

We use transition systems for reasoning about the finite-state execution (Section 4), which is233

fairly standard [9, 11, 35]. Previous work on the W-calculus [17] for linear digital signal234

processing filters makes a similar distinction and provides a non-streaming semantics for235

reasoning about programs and a streaming semantics for executing programs.236

The judgment form Σ ⊢ e ⇓ v denotes that expression e evaluates to value v under237

streaming history Σ. The streaming history is a stream of heaps; in practice, we only evaluate238

expressions with a non-empty streaming history.239

Rule Value states that evaluating a value results in the value itself.240

8 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

Σ ⊢ e ⇓ v

Σ ⊢ v ⇓ v
(Value) Σ; σ ⊢ x ⇓ σ(x) (Var)

Σ ⊢ e1 ⇓ v1 . . . Σ ⊢ en ⇓ vn

Σ ⊢ p(e) ⇓ prim-sem(p, v) (Prim)

σ ⊢ v fby e′ ⇓ v
(Fby1) length(Σ) > 0 Σ ⊢ e′ ⇓ v′

Σ; σ ⊢ v fby e′ ⇓ v′ (FbyS)

Σ ⊢ e[x := rec x. e] ⇓ v

Σ ⊢ rec x. e[x] ⇓ v
(Rec) Σ ⊢ e′[x := e] ⇓ v

Σ ⊢ let x = e in e′[x] ⇓ v
(Let)

Σ ⊢ checkπ e ⇓ () (Check)

Σ ⊢ ebody ⇓ v

Σ ⊢ contractπ {erely} ebody {x. eguar[x]} ⇓ v
(Contract)

Σ ⊢ e ⇓∗ V Σ ⊢ e ⇓2 ⊤

· ⊢ e ⇓∗ ·
(Steps0) Σ ⊢ e ⇓ V Σ; σ ⊢ e ⇓ v

Σ; σ ⊢ e ⇓ V ; v
(StepsS)

Σ ⊢ e ⇓∗ ⊤; . . .

Σ ⊢ e ⇓2 ⊤
(Always)

Figure 4 Dynamic semantics for Pipit; the judgment form Σ ⊢ e ⇓ v denotes that evaluating
expression e under streaming history Σ results in value v.

A. Robinson and A. Potanin 9

Rule Var states that to evalute a variable x under some non-empty stream history Σ; σ,241

where σ is the most recent heap, we look up the variable in σ.242

Rule Prim states that to evaluate a primitive p applied to many arguments e1 to en, we243

evaluate each argument separately; we then use the prim-sem metafunction to apply the244

primitive.245

Rule Fby1 evaluates a followed-by expression when the streaming history contains only a246

single element. Here, v fby e evaluates to v, as there is no previous value of e to use.247

Rule FbyS evaluates a followed-by expression when the streaming history contains248

multiple entries. In this case, v fby e proceeds to evaluate the previous value of e by249

discarding the most recent entry from the streaming history.250

Rule Rec evaluates a recursive stream rec x. e by unfolding the recursion one step. For251

causal expressions (Subsection 3.3), where each recursive occurrence of x is guarded by a252

followed-by, this unfolding will eventually terminate, as the follow-by shortens the streaming253

history.254

Rule Let is standard.255

Rule Check states that check expressions always evaluate to unit. We do not perform a256

dynamic check that the property is true here; checking the truth of properties is dealt with257

in the checked semantics (Subsection 3.2).258

Rule Contract states that contracts evaluate by just evaluating their body. Like with259

checks, we do not perform a dynamic check that the precondition and postcondition hold.260

We also use two auxiliary judgment forms: Σ ⊢ e ⇓∗ V and Σ ⊢ e ⇓2 ⊤.261

Judgment form Σ ⊢ e ⇓∗ V denotes that, under streaming history Σ, expression e262

evaluates to the stream V . This judgment is an iterated application of the single-value263

big-step form.264

Judgment form Σ ⊢ e ⇓2 ⊤ denotes that expression e, which must be a boolean, evaluates265

to the stream of trues under history Σ. Informally, it can be read as “in streaming history Σ,266

e is always true”.267

3.2 Checked semantics268

In addition to the big-step semantics above, we also define a judgment form for checking that269

the properties and contracts of a program hold for a particular streaming history. We call270

these the checked semantics. Unlike an axiomatic semantics, the checked semantics operate271

on a concrete set of input streams.272

The checked semantics have the judgment form Σ ⊢π e valid, which denotes that under273

streaming history Σ, the properties of e with status π hold. The property status dictates274

which properties should be checked and which should be ignored.275

To show that an expression e’s unknown properties hold, we prove that for all streaming276

histories Σ, assuming the valid properties hold (Σ ⊢□✓ e valid), then the unknown properties277

(Σ ⊢□? e valid) hold. The assumption here means that we do not have to re-check properties278

after proving them once.279

Contracts involve two proofs: one for the definition and one for the instantiation. To prove280

that a contract definition contractπ {erely} ebody {x. eguar[x]} is valid, we show that for all281

streaming histories Σ, assuming the rely is always true under the history (Σ ⊢ erely ⇓2 ⊤),282

then the body always satisfies the guarantee (Σ ⊢ eguar[x := ebody] ⇓2 ⊤). Additionally, we283

can also assume that the valid properties in all three components hold, and we must also284

show that the unknown properties are valid. The fact that the checked semantics refers to285

a particular Σ is significant here: it allows the proof of contract validity to only consider286

10 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

Σ ⊢π e valid

Σ ⊢π v valid (ChkValue) Σ ⊢π x valid (ChkVar)

Σ ⊢π e1 valid . . . Σ ⊢π en valid
Σ ⊢π p(e) valid (ChkPrim)

σ ⊢π v fby e′ valid
(ChkFby1) length(Σ) > 0 Σ ⊢π e′ valid

Σ; σ ⊢π v fby e′ valid
(ChkFbyS)

Σ ⊢π e[x := rec x. e] valid
Σ ⊢π rec x. e[x] valid (ChkRec) Σ ⊢π e′[x := e] valid

Σ ⊢π let x = e in e′[x] valid
(ChkLet)

(π = π′ =⇒ Σ ⊢ e ⇓2 ⊤) Σ ⊢π e valid
Σ ⊢π checkπ′ e valid (ChkCheck)

(π = π′ =⇒ Σ ⊢ erely ⇓2 ⊤)
(π = □✓ =⇒ Σ ⊢ erely ⇓2 ⊤ =⇒ Σ ⊢ eguar[x := ebody] ⇓2 ⊤)

Σ ⊢π erely valid
(Σ ⊢ erely ⇓2 ⊤ =⇒ Σ ⊢π ebody valid ∧ Σ ⊢π eguar[x := ebody] valid)

Σ ⊢π contractπ′ {erely} ebody {x. eguar[x]} valid
(ChkContract)

Figure 5 Checked semantics for Pipit; the judgment form Σ ⊢π e valid denotes that evaluating
expression e under streaming history Σ satisfies the checks and rely-guarantee contract requirements
that are labelled with property status π.

A. Robinson and A. Potanin 11

streaming histories where the rely actually holds. TODO: WAFFLE? This is expanded on287

in Subsubsection 3.2.1; kill here?288

To prove that a contract instantiation (a call-site) is valid, we show that, under the calling289

environment, the rely clause is always true. Crucially, the proof can also use the fact that, if290

the rely is always true, then the guarantee is always true. This sort of feedback is necessary291

for proving properties of mutually-dependent calls. Although this feedback appears circular,292

we enforce causality by requiring that occurrences of recursive streams are guarded by delays293

(Subsection 3.3).294

We define the checked semantics of Pipit in Figure 5. The checked semantics mostly295

follows the structure of the dynamic semantics, checking any properties and contracts as296

they are encountered.297

Rules ChkValue and ChkVar state that values and variables are always valid.298

Rule ChkPrim checks a primitive application by descending into the subexpressions.299

Rules ChkFby1 and ChkFbyS are derived from the structure of the big-step rules Fby1300

and FbyS . At an input stream of length one, ChkFby1 asserts that all subproperties301

hold for the (non-existent) previous values in the stream. At subsequent parts of the302

stream, ChkFbyS discards the most recent element of the stream history and checks the303

subexpression with the previous inputs.304

Rules ChkRec and ChkLet both perform the same unfolding as the corresponding305

big-step rules and check the resulting expression.306

Finally, the heavy lifting is performed by rules ChkCheck and ChkContract.307

Rule ChkCheck applies when checking property status π of an expression checkπ′ e. If308

the check-expression has the same status as what we are checking (π = π′), then we perform309

the actual check by evaluating the expression e and requiring it to evaluate to a stream310

of trues. Otherwise, we do not need to evaluate the check-expression. In both cases, we311

descend into the expression and check its subexpressions, as they may have nested properties.312

Such nested properties are unlikely to be written directly by the user, but might occur after313

program transformations such as inlining.314

Rule ChkContract applies when checking property status π of a contract with expression315

contractπ′ {erely} ebody {x. eguar[x]}. Although we only include one property status on316

the contract, conceptually there are two distinct properties: one for the caller (π′) and one317

for the definition itself (assumed to be □✓). To check the caller property when π = π′, we318

evaluate the rely erely and require it to be true. To check the definition property when π = □✓ ,319

we assume that the rely holds, and check that the body satisfies the guarantee. We also320

descend into the subexpressions to check them; when checking the body and guarantee, we321

can assume that the rely holds. Unfortunately, this rule must deal with the two different322

roles of a contract at once; in the next section, we will separate the two roles.323

3.2.1 Blessing expressions and contracts324

Blessing is a meta-operation that replaces the property statuses in an expression so that all325

checks and contracts are marked as valid (□✓). Blessing an expression requires a proof that326

the checked semantics hold for all input streams:327

∀Σ. Σ ⊢□✓ e valid =⇒ Σ ⊢□? e valid
bless e

(BlessExpression)

Blessing is slightly different for contract definitions, as we need to separate the definition328

of the contract from the instantiation. To check that a contract definition is valid, we show329

that if the rely clause is always true for a particular input, then the body satisfies the330

12 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

guarantee for the same inputs. We also assume that the valid properties in the rely, body331

and guarantee hold, and show the corresponding unknown properties:332

let contract_valid {erely} ebody {eguar} : prop =
∀Σ. (Σ ⊢□✓ (erely, ebody, eguar[x := ebody]) valid ∧ Σ ⊢ erely ⇓2 ⊤)
=⇒ (Σ ⊢□? (erely, ebody, eguar[x := ebody]) valid ∧ Σ ⊢ eguar[x := ebody] ⇓2 ⊤)

After proving that the contract is valid for all inputs, we can bless the contract definition.
Blessing the contract definition blesses the subexpressions for the rely, body and guarantee,
but leaves the contract’s instantiation property status as unknown:

contract_valid {erely} ebody {eguar}
bless_contract {erely} ebody {eguar}

(BlessContract)

3.3 Causality and metatheory333

To ensure that recursive streams have a computational interpretation, we require that all334

recursive streams are guarded by a followed-by delay. We implement this as a simple syntactic335

check: each rec x. e can only mention x inside a followed-by. This check is stricter than336

necessary: for example, the expression rec x. (let x′ = x + 1 in 0 fby x′) does mention337

the recursive stream x outside of the delay, but after inlining the let, it would be causal. We338

hope to relax this restriction somewhat in future work.339

The causality restriction gives us some important properties about the metatheory. The340

most important property is that the dynamic semantics form a total function: given a341

streaming history and a causal expression, we can evaluate the expression to a value. These342

properties are mechanised in F⋆.343

▶ Theorem 1 (bigstep-is-total). For any non-empty streaming history Σ and causal expression344

e, there exists some value v such that e evaluates to v (Σ ⊢ e ⇓ v).345

The relationship between substitution and the streaming history is also important. In346

general, we have a substitution property that states that evaluating a substituted expression347

e[x := e′] under some context Σ is equivalent to evaluating e′ and adding it to the context Σ:348

▶ Theorem 2 (bigstep-substitute). For a streaming history Σ and a causal expression e, if349

e[x := e′] evaluates to a value v (Σ ⊢ e ⇓ v), then we can evaluate e′ to some stream V and350

extend the streaming history to evaluate e to the original value (Σ[x 7→ V] ⊢ e ⇓ v). The351

converse is also true.352

The semantics in Figure 4 for a recursive expression rec x. e performs one step of353

recursion by substituting x for the recursive expression. An alternative semantics would be354

to have the environment outside the semantics invent a stream V such that if we extend the355

streaming history with x 7→ V , then e evaluates to V itself. The above substitution theorem356

can be used to show that these two semantics are equivalent. Thanks to causality, we can357

additionally show that, when evaluating e with x 7→ V , the most recent value in V does not358

affect the result. This fact can be used to “seed” evaluation by starting with an arbitrary359

value:360

▶ Theorem 3 (bigstep-rec-causal). For a streaming history Σ; σ and a causal recursive361

expression rec x. e, if (Σ; σ ⊢ e ⇓ v), then updating σ[x] with any value v′ results in the362

same value: (Σ; σ[x 7→ v′] ⊢ e ⇓ v).363

A. Robinson and A. Potanin 13

type system (input: Γ) (result: τ) = {
state: Γ;
free: Γ;
init: heap state;
step: heap input → heap free → heap state → step_result state result;

}

type step_result (state: Γ) (result: τ) = {
update: heap state;
value: result;
rely: prop;
guar: prop;

}

Figure 6 Abstract transition system type definitions

4 Abstract transition systems364

To prove properties about Pipit programs, we translate to an abstract transition system,365

so-called because it abstracts away the implementation details of contract instantiations. For366

extraction we also translate to executable transition systems, which we discuss in Section 5.367

Figure 6 shows the types of transition systems. A transition system is parameterised by368

its input context and the result type. It also contains two internal contexts: firstly, the state369

context describes the private state required to execute the machine; secondly, the free context370

contains any extra input values that the transition system would like to quantify over. The371

free context is used to allow the system to ask for arbitrary values from the environment,372

when it would not otherwise be able to return a concrete value.373

For contract instantiations, which abstract over the implementation, the natural transla-374

tion to a transition system would involve an existential quantifier: there exists some value375

that satisfies the specification. Unfortunately, such an existential quantifier requires a step376

relation rather than a step function. Using a step relation complicates the resulting transition377

system, as other operations such as primitive application must also introduce existential378

quantifiers; such quantifiers block normalisation and result in a more complex transition379

system. Instead, the free context provides the step function with a fresh unconstrained value380

of the desired type, which the step function can then constrain.381

As usual, the step-result contains the updated state for the transition system, as well382

as the result value. The step-result additionally contains two propositions for the ‘rely’,383

or assumptions about the execution environment, and ‘guarantee’, or obligations that the384

transition system must show. For the transition system corresponding to an expression e,385

these propositions are analogous to the known checked semantics Σ ⊢□✓ e valid and unknown386

checks Σ ⊢□? e valid respectively.387

Our implementation includes a mechanised proof that, for causal expressions, the transition388

system is an abstraction of the original expression’s dynamic semantics. The proof that the389

rely and guarantee propositions correspond to the checked semantics is future work.390

Figure 7 defines the internal state and free contexts required for an expression. For most391

expression forms, the state and free contexts are defined by taking the union of the contexts392

of subexpressions. Followed-by delays introduce a local state variable xfby in which to store393

14 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

JvKstate = ·
JxKstate = ·

Jp(e)Kstate =
⋃

i
JeiKstate

Jv fby eKstate = xfby : τ, JeKstate (fresh xfby)
Jrec x. eKstate = JeKstate

Jlet x = e in e′Kstate = JeKstate ∪ Je′Kstate

Jcheckπ eKstate = JeKstate

Jcontractπ {er} eb {x. eg}Kstate = JerKstate ∪ JebKstate

JvKfree = ·
JxKfree = ·

Jp(e)Kfree =
⋃

i
JeiKfree

Jv fby eKfree = JeKfree

Jrec x. eKfree = x : τ, JeKfree

Jlet x = e in e′Kfree = JeKfree ∪ Je′Kstate

Jcheckπ eKfree = JeKfree

Jcontractπ {er} eb {x. eg}Kfree = x : τ, JerKfree ∪ JebKstate

Figure 7 Transition system typing contexts of expressions; for an expression e, JeKstate : Γ and
JeKfree : Γ describe the heaps used to store the expression’s internal state and extra inputs.

the most recent stream value. We generate a fresh variable here, though the implementation394

uses de Bruijn indices. Recursive streams and contracts both introduce new bindings into395

the free context, assuming that their binders x are unique.396

Figure 8 defines the translation for expressions. Values and expressions have no internal397

state. For variables, we look for the variable binding in either of the input or free heaps;398

bindings are unique and cannot occur in both. We omit the rely and guarantee definitions399

here; both are trivially true.400

To translate primitives, we union together the initial states of the subexpressions; updating401

the state is similar. For the rely and guarantee definitions, we take the conjunction: we can402

assume that all subexpressions rely clauses hold, and must show that all guarantees hold.403

To translate a followed-by v fby e, we initialise the follow-by’s unique binder xfby to v.404

At each step, we return the value in the local state, before updating the local state to the405

subexpression’s new value. The rely and guarantee differ from the checked semantics here:406

in the checked semantics, we check the subexpression on the previous inputs, but here we407

check the current subexpression. This means that a single step of the rely and guarantee do408

not exactly correspond to the checked semantics; however, we posit that they are equivalent409

for a rely and guarantee that has been proven to hold for any sequence of inputs.410

To translate a recursive expression rec x. e of type τ , we require an arbitrary value411

x : τ in the free heap. The rely proposition constrains the free variable x to be the result of412

evaluating e with the binding for x passed along, thus closing the recursive loop.413

To translate let-expressions let x = e in e′, we extend the input heap with the value of414

e before evaluating e′. The presentation here duplicates the computation of the value of e,415

but this is not an issue in practice.416

To translate a check property, we inspect the property status. If the property is known to417

be valid, then we can assume the property is true in the rely clause. Otherwise, we include418

the property as an obligation in the guarantee clause. In either case, we also include the419

subexpression’s rely and guarantee clauses.420

Finally, to translate contract instantiations, we use the contract’s rely and guarantee and421

A. Robinson and A. Potanin 15

JvKinit = ()
JvKvalue(i, f, s) = v

JxKinit = ()
JxKvalue(i, f, s) = (i ∪ f).x

Jp(e)Kinit =
⋃

i
JeiKinit

Jp(e)Kvalue(i, f, s) = prim-sem(p, JeKvalue(i, f, s))
Jp(e)Kupdate(i, f, s) =

⋃
i
JeiKupdate(i, f, s)

Jp(e)Krely(i, f, s) =
∧

i
JeiKrely(i, f, s)

Jp(e)Kguar(i, f, s) =
∧

i
JeiKguar(i, f, s)

Jv fby eKinit = JeKinit ∪ {xfby 7→ v}
Jv fby eKvalue(i, f, s) = s.xfby
Jv fby eKupdate(i, f, s) = JeKupdate(i, f, s) ∪ {xfby 7→ JeKvalue(i, f, s)}
Jv fby eKrely(i, f, s) = JeKrely(i, f, s)
Jv fby eKguar(i, f, s) = JeKguar(i, f, s)

Jrec x. eKinit = JeKinit

Jrec x. eKvalue(i, f, s) = f.x

Jrec x. eKupdate(i, f, s) = JeKupdate(i, f, s)
Jrec x. eKrely(i, f, s) = JeKrely(i, f, s)

∧ f.x = JeKvalue(i, f, s)
Jrec x. eKguar(i, f, s) = JeKguar(i, f, s)

Jlet x = e in e′Kinit = JeKinit ∪ Je′Kinit

Jlet x = e in e′Kvalue(i, f, s) = Je′Kvalue(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)
Jlet x = e in e′Kupdate(i, f, s) = Je′Kupdate(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∪ JeKupdate(i, f, s)
Jlet x = e in e′Krely(i, f, s) = Je′Krely(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∧ JeKrely(i, f, s)
Jlet x = e in e′Kguar(i, f, s) = Je′Kguar(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∧ JeKguar(i, f, s)

Jcheckπ eKinit = JeKinit

Jcheckπ eKvalue(i, f, s) = ()
Jcheckπ eKupdate(i, f, s) = JeKupdate(i, f, s)
Jcheckπ eKrely(i, f, s) = (π = □✓ =⇒ JeKvalue(i, f, s)) ∧ JeKrely(i, f, s)
Jcheckπ eKguar(i, f, s) = (π = □? =⇒ JeKvalue(i, f, s)) ∧ JeKguar(i, f, s)

Jcontractπ {er} eb {x. eg}Kinit = JerKinit ∪ JegKinit

Jcontractπ {er} eb {x. eg}Kvalue(i, f, s) = f.x

Jcontractπ {er} eb {x. eg}Kupdate(i, f, s) = JerKupdate(i, f, s) ∪ JegKupdate(i, f, s)
Jcontractπ {er} eb {x. eg}Krely(i, f, s) = (JerKvalue(i, f, s) =⇒ JegKvalue(i, f, s))

∧ (π = □✓ =⇒ JerKvalue(i, f, s))
∧ JerKrely(i, f, s) ∧ JegKrely(i, f, s)

Jcontractπ {er} eb {x. eg}Kguar(i, f, s) = (π = □? =⇒ JerKvalue(i, f, s))
∧ JerKguar(i, f, s) ∧ JegKguar(i, f, s)

Figure 8 Transition system semantics; for an expression Γ ⊢ e : τ , JeKinit : heap JeKstate is
the initial state. For each field of the step-result type, we define a translation function that
takes the input, free and state heaps: for example, we define the value-result of a step with type
JeKvalue : heap Γ → heap JeKfree → heap JeKstate → τ .

16 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

Σ ⊢ e ∼ s

Σ ⊢ v ∼ s
(IValue) Σ ⊢ x ∼ s

(IVar)

Σ ⊢ e1 ∼ s . . . Σ ⊢ en ∼ s

Σ ⊢ p(e) ∼ s
(IPrim)

s.xfby = v · ⊢ e′ ∼ s

· ⊢ v fby e′ ∼ s
(IFby0)

Σ; σ ⊢ e′ ⇓ s.xfby Σ; σ ⊢ e′ ∼ s

Σ; σ ⊢ v fby e′ ∼ s
(IFbyS)

Σ ⊢ rec x. e ⇓∗ V Σ[x 7→ V] ⊢ e ∼ s

Σ ⊢ rec x. e[x] ∼ s
(IRec)

Σ ⊢ e ⇓∗ V Σ ⊢ e ∼ s Σ[x 7→ V] ⊢ e′ ∼ s

Σ ⊢ let x = e in e′[x] ∼ s
(ILet)

Σ ⊢ e ∼ s

Σ ⊢ checkπ e ∼ s
(ICheck)

Σ ⊢ ebody ⇓∗ V Σ ⊢ erely ∼ s Σ[x 7→ V] ⊢ eguar ∼ s

Σ ⊢ contractπ {erely} ebody {x. eguar[x]} ∼ s
(IContract)

Figure 9 Transition system state invariant

ignore the body. As with recursive expressions, we require an arbitrary value x : τ in the422

free heap. The translation’s rely allows us to assume that the contract definition holds: that423

is, the contract’s rely implies the contract’s guarantee. If the contract instantiation is known424

to be valid, we can also assume that the contract’s rely holds. Otherwise, we include the425

contract’s rely as an obligation by putting it in the translation’s guarantee.426

In the contract instantiation, we assume that if the contract rely is true at the current427

step, then the contract guarantee also holds at the current step. The true semantics of428

the contract, however, only holds if the contract rely is true at every step so far. This429

simplification is justified as our definition of validity for a transition system also requires430

the translation rely to be true at every step. This simplification is essentially an application431

of the 22p =⇒ 2p axiom of modal logic. The mechanised proof of this simplification is432

future work.433

4.1 Translation correctness proofs434

We prove that the transition system is an abstraction of the dynamic semantics: that is, if435

the expression evaluates to v under some context, then there exists some execution of the436

transition system that also results in v. The transition system itself is deterministic, but the437

free context provides the non-determinism; our theorem statement existentially quantifies438

the free heap.439

The results presented here rely heavily on the totality and substitution metaproperties440

described in Subsection 3.3. Figure 9 defines the invariant for the abstraction proof; the441

judgment form Σ ⊢ e ∼ s checks that s is a valid state heap. We use the invariant to state442

A. Robinson and A. Potanin 17

that, if executing the transition system for e on the entire streaming history Σ results in443

state heap s, then s is a valid state.444

As most expressions do not modify the state heap, the invariant for most expressions445

simply descends into the subexpressions. Where new bindings are added, we use the dynamic446

semantics to extend the context with the new values. The invariant for follow-by expressions447

asserts that the initial state of the follow-by is the default value; on subsequent steps, the448

state corresponds to the dynamic semantics.449

▶ Theorem 4 (translation-abstraction). For a well-typed causal expression e and streaming450

history Σ, if e evaluates to v (Σ ⊢ e ⇓ v), then there exists a sequence of free heaps ΣF such451

that repeated application of the transition system’s step results in v.452

5 Extraction453

Pipit can generate executable code which is suitable for real-time execution on embedded454

devices. The code extraction uses a variation of the abstract transition system described in455

Section 4, with two main differences to ensure that the result is executable without relying456

on the environment to provide values for the free context. Contracts are straightforward to457

execute by using the body of the contract rather than abstracting over the implementation.458

To execute recursive expressions rec x. e : τ , we require an arbitrary value of type τ to459

seed the fixpoint, as described in Subsection 3.3. We first call the step function to evaluate e460

with x bound to ⊥τ . This step call returns the correct value, but the updated state is invalid,461

as it may refer to the bottom value. To get the correct state, we call the step function again,462

this time with e bound to v.463

This translation to transition systems is verified to preserve the original semantics. To464

extract the program, we use a hybrid embedding as described in [23], which is similar to staged-465

compilation. The hybrid embedding involves a deep embedding of the Pipit core language,466

while the translation to executable transition systems produces a shallow embedding. We467

use the F⋆ host language’s normalisation-by-evaluation and tactic support [31] to specialise468

the application of the translation to a particular input program. This specialisation results469

in a concrete transition system that fits in the Low⋆ [34] subset of F⋆, which can then be470

extracted to statically-allocated C code.471

The translation for recursive streams described above calls the step function of the sub-472

stream twice, which can duplicate work. The normalisation strategy used to partially-evaluate473

the translation inlines the two occurrences of the step function, and is often able to remove the474

duplicate work, but this removal is not guaranteed. Our current approach is also unsuitable475

for generating imperative array code, as our shallowly-embedded pure transition system476

requires pure arrays. In the future, we intend to address array computations and the above477

work duplication by introducing an intermediate imperative language such as Obc [3], a static478

object-based language suitable for synchronous systems. Even with an added intermediate479

language, we believe that a variant of our current translation and proof-of-correctness will480

remain useful as an intermediate semantics.481

6 Evaluation482

As a preliminary evaluation of Pipit, we have implemented the high-level logic of a time-483

triggered Controller Area Network (CAN) bus driver [1]. The CAN bus is commonly found484

in safety-critical automotive and industrial settings. The time-triggered network architecture485

18 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

defines a static schedule of network traffic. All nodes on the network must adhere to the486

same schedule, which significantly increases the reliability of periodic messages [15].487

At a high level, the schedule is described by a system matrix which consists of rows of488

basic cycles. Each basic cycle consists of a sequence of actions to be performed at particular489

time-marks. Actions in the schedule may not be relevant to all nodes, so each node has its490

own local array containing the relevant triggers; trigger actions include sending and receiving491

application-specific messages, sending reference messages, and triggering ‘watch’ alerts. The492

trigger action for receiving an application-specific message checks that a particular message493

has been received since the trigger was last executed; depending on this, the driver increments494

or decrements a message-status-counter, which will in turn signal an error once the upper495

limit is reached. Reference messages start a new basic cycle and are used to synchronise the496

nodes. Watch alerts are generally placed after the expected end of the cycle and are used to497

signal an error if no reference message is received.498

The TTCAN protocol can be implemented in two levels of increasing complexity. In the499

first level, reference messages contain the index of the newly-started cycle. In the second500

level, the reference messages also contain the value of a global fractional clock and whether501

any gaps have occurred in the global clock, which allows other nodes to calibrate their own502

clocks. We implement the first level as it is more amenable to software implementation [22].503

The implementation defines a streaming function that takes a stream describing the current504

time, the state of the hardware, and any received messages. It returns a stream of commands505

to be performed, such as sending a particular reference message. The implementation defines506

a pure streaming function. To actually interact with the hardware we assume a small507

hardware-interop layer that reads from the hardware registers and translates the commands508

to hardware-register writes, but we have not yet implemented this. We package the driver’s509

inputs into a record for convenience:510

type driver_input = {
local_time: network_time_unit;
mode_cmd: option mode;
tx_status: tx_status;
bus_status: bus_status;
rx_ref: option ref_message;
rx_app: option app_message_index;

}

Here, the local-time field denotes the time-since-boot in network time units, which are511

based on the bitrate of the underlying network bus. The mode-command is an optional field512

which indicates requests from the application to enter configuration or execution mode. The513

transmission-status describes the status of the last transmission request and may be none,514

success, or various error conditions. The bus-status describes whether the bus is currently515

idle, busy, or in an error state. The two receive fields denote messages received from the bus;516

for application-specific messages the time-triggered logic only needs the message identifier.517

The driver-logic returns a stream of commands for the hardware-interop layer to perform:518

type commands = {
enable_acks: bool;
tx_ref: option ref_message;
tx_app: option app_message_index;
tx_delay: network_time_unit;

}

A. Robinson and A. Potanin 19

The enable-acks field denotes whether the hardware should respond to messages from519

other nodes with an acknowledgement bit; in the case of a severe error acknowledgements are520

disabled, as the node must not write to the bus at all. The transmit fields denote whether521

to send a reference message or an application-specific message. For application-specific522

messages, the hardware-interop layer maintains the transmission buffers containing the actual523

message payload. To meet the schedule as closely as possible, the driver anticipates the next524

transmission and includes a transmission delay to tell the hardware exactly when to send the525

next message.526

6.1 Runtime527

The implementation includes an extension of the trigger-fetch logic described in Section 2, as528

well as state machines for tracking node synchronisation, master status and fault handling.529

We generate real-time C code as described in Section 5. We evaluated the generated C code530

by executing with randomised inputs and measuring the worst-case-execution-time on a531

Raspberry Pi Pico (RP2040) microcontroller. The runtime of the driver logic is fairly stable:532

over 5,000 executions, the measured worst-case execution time was 114µs, while the average533

was 107µs with a standard deviation of 2.3µs. Earlier work on fault-tolerant TTCAN [41]534

describes the required slot sizes — the minimum time between triggers — to achieve bus535

utilisation at different bus rates. For a 125Kbit/s bus, a slot size of approximately 1,500µs536

is required to achieve utilisation above 85 per cent. For the maximum CAN bus rate of537

1Mbit/s, the required slot size is 184µs. Further evaluation is required to ensure that the538

complete runtime including the hardware-interop layer is sufficient for full-speed CAN.539

Our code generation can be improved in a few ways. A common optimisation in Lustre is540

to fuse consecutive if-statements with the same condition [5]; such an optimisation seems541

useful here, as our treatment of optional values introduces repeated unpacking and repacking.542

Some form of array fusion [37] may also be useful for removing redundant array operations.543

Our current extraction generates a transition-system with a step function which returns544

a tuple of the updated state and result. Composing these step functions together results545

in repeated boxing and unboxing of this tuple; we currently rely on the F⋆ normaliser to546

remove this boxing. In the future, we plan to build on the current proofs to implement a547

more-sophisticated encoding that introduces less overhead.548

6.2 Verification549

We have verified a simplified trigger-fetch mechanism, as presented earlier (Section 2). For550

comparison, we implemented the same logic in the Kind2 model-checker [11]. The restrictions551

placed on the triggers array — that triggers are sorted by time-mark, that there must be an552

adequate time-gap between a trigger and its next-enabled, and that a trigger’s time-mark553

must be greater-than-or-equal-to its index — are naturally expressed with quantifiers. The554

Kind2 model-checker includes experimental array and quantifier support [26]. Due to the555

experimental nature of these features, we had to work around some limitations: for example,556

the use of arrays and quantifiers disables IC3-based invariant generation; quantified variables557

cannot be used in function calls; and the use of top-level constant arrays caused runtime558

errors that rendered most properties invalid [27].559

We were able to verify the Kind2 implementation of the simplified trigger-fetch mechanism560

for trigger arrays containing up to 16 elements; above that, a 32-size array reported multiple561

runtime errors and did not terminate after several hours. For reference, the M_TTCAN562

hardware implementation of TTCAN supports up to 64 triggers [36].563

20 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

Kind2 Pipit
simple enable-set full enable-set

size wall-clock CPU wall-clock CPU wall-clock CPU
1 2s 3s 6s 12s 6s 6s
2 3s 3s 8s 12s 6s 6s
4 5s 11s 12s 24s 6s 6s
8 8s 13s 82s 90s 6s 6s

16 125s 276s error 6s 6s
32 error error 6s 6s

Figure 10 Verification time for trigger-fetch; simple enable-set uses a simplified version of the
enable-set, while full enable-set uses bitwise arithmetic as in the TTCAN specification.

We made a critical simplification in the Kind2 implementation, which was to modify564

the trigger-enabled set to be a single cycle index. In the specification, the enabled set is565

implemented as a cycle-offset and repeat-factor. Checking if a trigger is enabled in the566

current cycle requires nonlinear arithmetic, which is difficult for SMT solvers. In our Pipit567

development, we can treat the definition of the cycle set abstractly. However, in the Kind2568

development, quantifiers cannot contain function calls, which means that we cannot hide the569

implementation of the enabled-set check by providing an abstract contract. This limitation570

also makes the specification quite unwieldy, as functions must be manually inlined.571

Figure 10 shows the verification runtime for different sizes of arrays; the Pipit version572

is parametric in the array size, and is thus verified for all sizes of arrays. We ran these573

experiments on a 2020 M1 MacBook Air with 16 gigabytes of RAM. Both Kind2 and Pipit574

developments of the simplified trigger-fetch logic are roughly the same size, on the order of575

two-hundred lines of code including comments.576

We plan to verify the remainder of the TTCAN implementation and publish it separately.577

Prior work formalising TTCAN has variously modeled the protocol itself [39, 33, 30], instances578

of the protocol [20], and abstract models of TTCAN implementations [29], but we are unaware579

of any prior work that has verified an executable implementation of TTCAN.580

Separately, Pipit has also been used to implement and verify a real-time controller for a581

coffee machine reservoir control system [38]. The reservoir has a float switch to sense the582

water level and a solenoid to allow the intake of water. The specification includes a simple583

model of the water reservoir and shows that the reservoir does not exceed the maximum584

level under different failure-mode assumptions.585

7 Related work586

Using existing Lustre tools to verify and execute the time-triggered CAN driver from Section 2587

is nontrivial. Compiling the triggers array with an unverified compiler such as Lustre V6 [24]588

or Heptagon [19] is straightforward; however, the verified Lustre compiler Vélus [7] does not589

support arrays or a foreign-function interface. Recent work on translation validation for590

LustreC [9] also does not yet support arrays.591

Verifying the time-triggered CAN driver is trickier, as the restrictions placed on the592

triggers array — that triggers are sorted by time-mark, there must be an adequate time-gap593

between a trigger and its next-enabled, and a trigger’s time-mark must be greater-than-or-594

equal-to its index — naturally require quantifiers. As described in Section 6, the Kind2 does595

include experimental array and quantifier support, but is limited to verifying small arrays596

A. Robinson and A. Potanin 21

up to 8 or 16 triggers. Additionally, due to the limitations on top-level array definitions,597

compiling the program with Lustre V6 would result in multiple copies of the entire triggers598

array on the stack.599

Other model-checkers for Lustre such as Lesar [35], JKind [16] and the original Kind [21]600

do not support quantifiers. It may be possible to encode the quantifiers as fixed-size loops,601

but ensuring that these loops do not affect the execution or runtime complexity of the602

generated code does not appear to be straightforward.603

These model-checkers have definite usability advantages over the general-purpose-prover604

approach offered here: they can often generate concrete counterexamples and implement605

counterexample-based invariant-generation techniques such as ICE [18] and PDR [8, 14].606

However, even when the problem can be expressed, these model-checkers do not provide much607

assurance that the semantics they use for proofs matches the compiled code. In the future, we608

would like to investigate integrating Pipit with a model-checker via an unverified extraction:609

such an extraction may allow some of the usability benefits such as counterexamples and610

invariant generation. If this integration were used solely for debugging and suggesting611

candidate invariants, then such a change would not expand the trusted computing base.612

Recent work has also introduced a form of refinement types for Lustre [12]. Rather613

than using transition systems, this work generates self-contained verification conditions614

based on the types of streams. Such a type-based approach promises to allow abstraction615

of the implementation details. However, for general-purpose functions such as count_when616

from Section 2, it is not clear how to give it a specification that actually abstracts the617

implementation: a simple specification that the result is within some range would hide be618

insufficient for verifying the rest of the system. For this function, the best specification is619

likely to include a re-statement of the implementation itself.620

The embedded language Copilot generates real-time C code for runtime monitoring [28].621

Recent work has used translation validation to show that the generated C code matches622

the high-level semantics [40]. Copilot supports model-checking via Kind2; however, the623

model-checking has a limited specification language and does not support contracts.624

Early work embedding a denotational semantics of Lucid Synchrone in an interactive625

theorem prover focussed on the semantics itself, rather than proving programs [4]. There is626

ongoing work to construct a denotational semantics of Vélus for program verification [6]. We627

believe that the hybrid SMT approach of F⋆ will allow for a better mixture of automated628

proofs with manual proofs. Compared to Vélus alone, the trusted computing base of Pipit is629

larger: we depend on all of F⋆, Low⋆’s C code extraction and the Z3 SMT solver.630

The deferred aspect of our proofs is similar to the deferred proofs of verification conditions631

for imperative programs, such as [32]. However, such verification conditions are syntactically632

deferred so that the verification condition can be proved later; in our case, the verification633

conditions are semantically deferred, so that more knowledge of the enclosing program634

can be exploited in the proof. In imperative programs, this sort of extra knowledge is635

generally provided explicitly as loop invariants, and non-looping statements have their636

weakest precondition computed automatically. In Lustre-style reactive languages such as637

ours, programs tend to be composed of many nested recursive streams, which perform a638

similar function to loops. Explicitly specifying an invariant for each recursive stream would639

be cumbersome; deferring the proof allows such invariants to be implicit.640

8 Conclusion641

TODO: requires rewrite TODO: future work: clocks642

22 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

Our preliminary results show that F⋆’s proof automation and code extraction are suitable643

for verifying reactive systems and executing them in real-time; these results still require644

further work. Next, we intend to verify the imperative code generation. Finally, we need645

to evaluate Pipit on larger control systems before extending the language to support more646

features, such as Lustre’s clocks for describing partially-defined streams [10].647

We are interested in further pursuing the intersection of model-checking with interactive648

theorem proving. A smart contract called Djed [42] currently uses a mixture of Kind2 [11]649

and manual Isabelle/HOL proofs to show that the contract is well-behaved. In future work,650

we would like to further investigate whether Pipit’s integration of streaming proofs with F⋆’s651

automated proof system would be able to provide similar proofs, without introducing any652

semantic gap between the two systems.653

Our current array support is limited: constant arrays provide a pure index function,654

while we only support fixed-size mutable arrays by wrapping bit-vectors. Array support is655

an obvious direction for future work; integrating with a verified array-fusion system such as656

[37] would be an interesting and useful extension.657

References658

1 ISO/CD 11898-4. Road vehicles - Controller area network (CAN) - Part 4: Time triggered659

communication. Standard, International Organization for Standardization, 2000.660

2 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library661

(SMT-LIB). www.SMT-LIB.org, 2016.662

3 Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. Clock-directed663

modular code generation for synchronous data-flow languages. In Proceedings of the 2008664

ACM SIGPLAN-SIGBED conference on Languages, compilers, and tools for embedded systems,665

pages 121–130, 2008.666

4 Sylvain Boulmé and Grégoire Hamon. A clocked denotational semantics for Lucid-Synchrone667

in Coq. Rap. tech., LIP6, 2001.668

5 Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel669

Rieg. A formally verified compiler for Lustre. In Proceedings of the 38th ACM SIGPLAN670

Conference on Programming Language Design and Implementation, 2017.671

6 Timothy Bourke, Paul Jeanmaire, and Marc Pouzet. Towards a denotational semantics of672

streams for a verified Lustre compiler. 2022. URL: https://types22.inria.fr/files/2022/673

06/TYPES_2022_slides_28.pdf.674

7 Timothy Bourke, Basile Pesin, and Marc Pouzet. Verified compilation of synchronous dataflow675

with state machines. ACM Transactions on Embedded Computing Systems, 22(5s):1–26, 2023.676

8 Aaron R Bradley. SAT-based model checking without unrolling. In Verification, Model677

Checking, and Abstract Interpretation: 12th International Conference, VMCAI 2011, Austin,678

TX, USA, January 23-25, 2011. Proceedings 12. Springer, 2011.679

9 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux. Equation-directed680

axiomatization of lustre semantics to enable optimized code validation. ACM Transactions on681

Embedded Computing Systems, 22(5s):1–24, 2023.682

10 Paul Caspi and Marc Pouzet. A functional extension to Lustre. Intensional Programming I,683

1995.684

11 Adrian Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. The Kind 2 model685

checker. In Computer Aided Verification, 2016.686

12 Jiawei Chen, José Luiz Vargas de Mendonça, Shayan Jalili, Bereket Ayele, Bereket Ngussie687

Bekele, Zhemin Qu, Pranjal Sharma, Tigist Shiferaw, Yicheng Zhang, and Jean-Baptiste688

Jeannin. Synchronous programming and refinement types in robotics: From verification to689

implementation. In Proceedings of the 8th ACM SIGPLAN International Workshop on Formal690

Techniques for Safety-Critical Systems, 2022.691

https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf

A. Robinson and A. Potanin 23

13 Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. Scade 6: A formal language for embedded692

critical software development. In 2017 International Symposium on Theoretical Aspects of693

Software Engineering (TASE), pages 1–11. IEEE, 2017.694

14 Niklas Eén, Alan Mishchenko, and Robert Brayton. Efficient implementation of property695

directed reachability. In 2011 Formal Methods in Computer-Aided Design (FMCAD). IEEE,696

2011.697

15 Thomas Fuehrer, Bernd Mueller, Florian Hartwich, and Robert Hugel. Time triggered CAN698

(TTCAN). SAE transactions, pages 143–149, 2001.699

16 Andrew Gacek, John Backes, Mike Whalen, Lucas Wagner, and Elaheh Ghassabani. The700

JKind model checker. In Computer Aided Verification: 30th International Conference, CAV701

2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,702

2018, Proceedings, Part II 30, pages 20–27. Springer, 2018.703

17 Emilio Jesús Gallego Arias, Pierre Jouvelot, Sylvain Ribstein, and Dorian Desblancs. The704

W-calculus: a synchronous framework for the verified modelling of digital signal processing705

algorithms. In Proceedings of the 9th ACM SIGPLAN International Workshop on Functional706

Art, Music, Modelling, and Design, pages 35–46, 2021.707

18 Pranav Garg, Christof Löding, Parthasarathy Madhusudan, and Daniel Neider. ICE: A708

robust framework for learning invariants. In Computer Aided Verification: 26th International709

Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,710

Austria, July 18-22, 2014. Proceedings 26. Springer, 2014.711

19 Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet. A modular memory712

optimization for synchronous data-flow languages: application to arrays in a Lustre compiler.713

ACM SIGPLAN Notices, 47(5), 2012.714

20 Xiaoyun Guo, Toshiaki Aoki, and Hsin-Hung Lin. Model checking of in-vehicle networking715

systems with CAN and FlexRay. Journal of Systems and Software, 161:110461, 2020.716

21 George Hagen and Cesare Tinelli. Scaling up the formal verification of Lustre programs with717

SMT-based techniques. In 2008 Formal Methods in Computer-Aided Design. IEEE, 2008.718

22 Florian Hartwich, Thomas Führer, Bernd Müller, and Robert Hugel. Integration of time719

triggered CAN (TTCAN_TC). SAE Transactions, pages 112–119, 2002.720

23 Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and Karthikeyan Bhargavan. Noise*: A721

library of verified high-performance secure channel protocol implementations. In 2022 IEEE722

Symposium on Security and Privacy (SP), pages 107–124. IEEE, 2022.723

24 Erwan Jahier, Pascal Raymond, and Nicolas Halbwachs. The Lustre V6 reference manual.724

Verimag, Grenoble, Dec, 2016.725

25 Kind2. Integer division rounds to negative infinite. Github issues, 2023. URL: https:726

//github.com/kind2-mc/kind2/issues/978.727

26 Kind2. Kind2 user documentation, 2.1.1 edition, 2023. URL: https://kind.cs.uiowa.edu/728

kind2_user_doc/doc.pdf.729

27 Kind2. Top-level array definition causes runtime failures. Github issues, 2024. URL: https:730

//github.com/kind2-mc/kind2/issues/1043.731

28 Jonathan Laurent, Alwyn Goodloe, and Lee Pike. Assuring the guardians. In Runtime732

Verification: 6th International Conference, RV 2015, Vienna, Austria, September 22-25, 2015.733

Proceedings. Springer, 2015.734

29 Gabriel Leen and Donal Heffernan. Modeling and verification of a time-triggered networking735

protocol. In International Conference on Networking, International Conference on Systems736

and International Conference on Mobile Communications and Learning Technologies (IC-737

NICONSMCL’06), pages 178–178. IEEE, 2006.738

30 Xin Li, Jian Guo, Yongxin Zhao, and Xiaoran Zhu. Formal modeling and verifying the739

TTCAN protocol from a probabilistic perspective. Journal of Circuits, Systems and Computers,740

28(10):1950177, 2018.741

31 Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel,742

Cătălin Hriţcu, Monal Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan743

https://github.com/kind2-mc/kind2/issues/978
https://github.com/kind2-mc/kind2/issues/978
https://github.com/kind2-mc/kind2/issues/978
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://github.com/kind2-mc/kind2/issues/1043
https://github.com/kind2-mc/kind2/issues/1043
https://github.com/kind2-mc/kind2/issues/1043

24 Pipit on the Post: Proving Pre- and Post-conditions of Reactive Systems

Protzenko, et al. Meta-F⋆: Proof automation with SMT, tactics, and metaprograms. In744

Programming Languages and Systems: 28th European Symposium on Programming, ESOP745

2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,746

ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Proceedings. Springer International747

Publishing Cham, 2019.748

32 Liam O’Connor. Deferring the details and deriving programs. In Proceedings of the 4th ACM749

SIGPLAN International Workshop on Type-Driven Development, pages 27–39, 2019.750

33 Can Pan, Jian Guo, Longfei Zhu, Jianqi Shi, Huibiao Zhu, and Xinyun Zhou. Modeling and751

verification of CAN bus with application layer using UPPAAL. Electronic Notes in Theoretical752

Computer Science, 309:31–49, 2014.753

34 Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng754

Wang, Santiago Zanella Béguelin, Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan755

Bhargavan, Cédric Fournet, et al. Verified low-level programming embedded in F⋆. Proc.756

ACM program. lang., 1(ICFP), 2017.757

35 Pascal Raymond. Synchronous program verification with Lustre/Lesar. Modeling and Verific-758

ation of Real-Time Systems, 2008.759

36 Robert Bosch GmbH. M_TTCAN Time-triggered Controller Area Network User’s Manual,760

3.3.0 edition, 2019. URL: https://www.bosch-semiconductors.com/media/ip_modules/pdf_761

2/m_can/mttcan_users_manual_v330.pdf.762

37 Amos Robinson and Ben Lippmeier. Machine fusion: merging merges, more or less. In763

Proceedings of the 19th International Symposium on Principles and Practice of Declarative764

Programming, pages 139–150, 2017.765

38 Amos Robinson and Alex Potanin. Pipit: Reactive systems in F⋆. In Proceedings of the 8th766

ACM SIGPLAN International Workshop on Type-Driven Development, 2023.767

39 Indranil Saha and Suman Roy. A finite state analysis of time-triggered CAN (TTCAN)768

protocol using Spin. In 2007 International Conference on Computing: Theory and Applications769

(ICCTA’07), pages 77–81. IEEE, 2007.770

40 Ryan G Scott, Mike Dodds, Ivan Perez, Alwyn E Goodloe, and Robert Dockins. Trust-771

worthy runtime verification via bisimulation (experience report). Proceedings of the ACM on772

Programming Languages, 7(ICFP):305–321, 2023.773

41 Michael Short and Michael J Pont. Fault-tolerant time-triggered communication using CAN.774

IEEE transactions on Industrial Informatics, 3(2):131–142, 2007.775

42 Joachim Zahnentferner, Dmytro Kaidalov, Jean-Frédéric Etienne, and Javier Díaz. Djed: a776

formally verified crypto-backed autonomous stablecoin protocol. In 2023 IEEE International777

Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9. IEEE, 2023.778

https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/m_can/mttcan_users_manual_v330.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/m_can/mttcan_users_manual_v330.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/m_can/mttcan_users_manual_v330.pdf

	1 Introduction
	2 Pipit for time-triggered networks
	2.1 Deferring and proving properties
	2.2 The time-triggered system matrix
	2.3 Instantiating lemmas and defining contracts

	3 Core language
	3.1 Dynamic semantics
	3.2 Checked semantics
	3.2.1 Blessing expressions and contracts

	3.3 Causality and metatheory

	4 Abstract transition systems
	4.1 Translation correctness proofs

	5 Extraction
	6 Evaluation
	6.1 Runtime
	6.2 Verification

	7 Related work
	8 Conclusion

