
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Pipit: Reactive Systems in F★ (Extended Abstract)
Amos Robinson

amos.robinson@anu.edu.au
Australian National University

Canberra, Australia

Alex Potanin
alex.potanin@anu.edu.au

Australian National University
Canberra, Australia

Abstract
Reactive languages such as Lustre and Scade are used to
implement safety-critical control systems; proving such pro-
grams correct and having the proved properties apply to
the compiled code is therefore equally critical. We introduce
Pipit, a small reactive language embedded in F★, designed for
verifying control systems and executing them in real-time.
Pipit includes a verified translation to transition systems; by
reusing F★’s existing proof automation, certain safety prop-
erties can be automatically proved by k-induction on the
transition system. Pipit can also generate imperative code in
a subset of F★ which is suitable for compilation and real-time
execution on embedded devices. This translation to impera-
tive code preserves types by construction; the proof that the
imperative code preserves semantics is ongoing.

CCS Concepts: • Computer systems organization→ Em-
bedded software; Real-time languages; • Theory of com-
putation → Program verification; Modal and temporal
logics; • Software and its engineering → Specialized
application languages.

Keywords: Lustre, streaming, reactive, control

ACM Reference Format:
Amos Robinson and Alex Potanin. 2023. Pipit: Reactive Systems
in F★ (Extended Abstract). In Proceedings of In submission (TyDe
’23). ACM, New York, NY, USA, 4 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 Introduction
Safety-critical control systems, such as the anti-lock braking
systems that are present inmost cars today, need to be correct
and execute in real-time. One approach, favoured by parts
of the aerospace industry, is to implement the controllers
in a high-level language such as Lustre [6] or Scade [10],
and verify that the implementations satisfy the high-level

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
TyDe ’23, 2023, In submission
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

specification using a model-checker, such as Kind2 [7]. These
model-checkers can prove many interesting properties auto-
matically, but do not provide many options for manual proofs
when the automated proof techniques fail. Additionally, the
semantics used by the model-checker may not match the
semantics of the compiled code, in which case properties
proved do not necessarily hold on the real system. This mis-
match may occur even when the compiler has been verified
to be correct, as in the case of Vélus [3]. For example, in
Vélus, integer division rounds towards zero, matching the
semantics of C; however, integer division in Kind2 rounds
to negative infinity, matching SMT-lib [1, 16].
To be confident that our proofs hold on the real system,

we need a single semantics that is shared between the com-
piler and the model-checker or prover. In this abstract we
introduce Pipit1, an embedded domain-specific language for
implementing and verifying controllers in F★. Pipit aims to
provide a high-level language based on Lustre, while reusing
F★’s proof automation and manual proofs for verifying con-
trollers [19], and using Low★’s C-code generation for real-
time execution [20]. Pipit translates its expression language
to a transition system for k-inductive proofs, which is veri-
fied; verifying the translation to imperative code is ongoing.

In this extended abstract we briefly describe the following
preliminary results, which we intend to describe fully in a
future publication:

• we motivate Pipit which, as an embedded language,
provides syntactic convenience with a small verifiable
core language (section 2);

• we demonstrate the use of F★’s existing normalisation
and proof automation to prove certain properties with
minimal effort (subsection 2.1);

• we describe a key difference between Pipit’s core lan-
guage and Lustre (section 3); and

• we evaluate Pipit by executing a verified controller on
an embedded system (section 5).

2 Programming and verifying in Pipit
A common requirement in controllers is to filter an input sig-
nal, perhaps using a finite impulse response (FIR) filter, which
is equivalent to a weighted moving average. An FIR filter
takes a vector of coefficients and an input signal; at every
point in time, it computes the dot product of the coefficients

1Implementation available at https://github.com/songlarknet/pipit

1

https://orcid.org/0009-0004-4837-4981
https://orcid.org/0000-0002-4242-2725
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/songlarknet/pipit

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

TyDe ’23, 2023, In submission Amos Robinson and Alex Potanin

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

and the most recent values of the signal. We can implement
an FIR filter in Pipit as follows:
let fir (coefficients: list R) (signal: stream R): stream R =
match coefficients with
| [] → 0
| 𝑐 :: cs → (signal · 𝑐) + (0 fby (fir cs signal))
The coefficient vector is represented by a list of reals, while

the signal is a stream of reals, and the result is the filtered
stream. The implementation starts by looking at the list of
coefficients and returns zero if the list is empty. If the list is
not empty, then we multiply the most recent value of the
stream by the coefficient (signal · 𝑐); we also take the result
of applying the remaining coefficients to the signal stream
(fir cs signal) and delay it (0 fby . . .) before summing the
two parts. At the start of execution the delay is initially zero.
Pipit is an embedded language, like Bedrock [9]: in this

example, the stream type denotes an actual Pipit expression,
while the list type and its associated pattern match is part
of the F★ meta-language. To get the real Pipit program, we
need to apply the filter to a concrete list of coefficients:
let fir2 (input: stream R): stream R =
fir [0.7; 0.3]input
Normalising this definition evaluates away all of the lists.

The result fits in the core language defined in section 3, for
which we can generate real-time imperative code:
let fir2 (input: stream R): stream R =

(0.7 · input) + (0 fby ((0.3 · input) + (0 fby 0)))
The properties that we want to state about reactive pro-

grams usually involve some temporal aspect. Rather than
defining a separate specification language, we implement
computable variants of temporal operators from past-time
linear temporal logic [14, 18]. We name the past-globally
operator sofar, as in the predicate has been true so far :
let sofar (𝑝: stream B): stream B =

rec 𝑝′. 𝑝 ∧ (true fby 𝑝′)
This definition takes a stream of predicates 𝑝 and intro-

duces a recursive stream 𝑝′. At each step, the recursive
stream 𝑝′ checks that the current predicate is true (𝑝), and
also checks that sofar was previously true (true fby 𝑝′). If
there is no previous value, it defaults to true.

2.1 Bounded input, bounded output
We can now state a bounded-input-bounded-output (BIBO)
property, which says that if the inputs have always been
within some particular range, then the outputs are also
within the range:
let bibo2 (n: R≥0) (input: stream R): stream B =
check (sofar(|input| ≤ 𝑛) =⇒ |fir2 input| ≤ 𝑛)
This property states that if the input has always been in the

range [−𝑛, 𝑛], then the output is alsowithin the range [−𝑛, 𝑛].
Note that the upper bound 𝑛 is a nonnegative real rather
than a stream of reals, which means that 𝑛 stays constant

𝑒, 𝑒′ := 𝑣 | 𝑥 | 𝑒 𝑒′
| 𝑣 fby 𝑒 | 𝑒) 𝑒′

| rec 𝑥. 𝑒 [𝑥] | check 𝑒

| let 𝑥 = 𝑒 in 𝑒′ [𝑥]

𝑣 := 𝑛 ∈ N | 𝑏 ∈ B | 𝑟 ∈ R | . . . | __ 𝑥𝑥 . 𝑒𝑒

Figure 1. Pipit core language grammar

across the whole stream. To prove that this property holds,
we translate to a transition system and show that the stream
is always true. In this case, induction over the transition
relation is sufficient to prove the property. There is some
boilerplate required to perform the induction, but both base
and step cases are automatically proved by F★:
let proof2 (n: R≥0): Lemma (induct (bibo2 n)) =

assert (base_case (bibo2 𝑛))by (pipit_simplify ());
assert (step_case (bibo2 𝑛)) by (pipit_simplify ())
This definition uses F★’s lemma syntax to state that the

BIBO property holds inductively for any 𝑛. The two asser-
tions prove the inductive cases separately, using our simplify
tactic to ensure that the translation to transition system is
normalised away, and any translation artefacts are removed.
If we wish to prove a similar BIBO property for a filter

with more coefficients, standard induction over the transi-
tion system is not sufficient: the relationship between the
stacked delays in the filter and sofar is not clear from a single
step of the transition system. One simple automated way
to strengthen invariants is via k-induction [13], which adds
more context by assuming that the property holds for 𝑘 previ-
ous steps of the transition relation. We can define analogous
functions fir3 and bibo3 which operate on the coefficients
[0.7; 0.2; 0.1], and use k-induction for 𝑘 = 2 as follows:
let proof3 (n: R≥0): Lemma (induct_k 2 (bibo3 n)) =

assert (base_case_k 2 (bibo3 𝑛)) by (pipit_simplify ());
assert (step_case_k 2 (bibo3 𝑛)) by (pipit_simplify ())
Although the properties here boil down to simple prop-

erties about linear arithmetic, we believe that this example
demonstrates a promising way to use F★’s existing proof
automation to verify reactive systems.

3 Core language
The grammar of Pipit is defined in Figure 1. The expression
form 𝑒 includes standard syntax for values (𝑣), variables (𝑥)
and applications (𝑒 𝑒′); however, it does not include any form
for defining functions except reusing closed functions from
the F★ meta-language (__ 𝑥𝑥 . 𝑒𝑒). Most of the expression forms
were introduced informally in section 2 and correspond to
the clock-free primitives in Lustre [6]. Streams can also be
composed together using the then notation (𝑒) 𝑒′) which
denotes that the value of stream 𝑒 is used for the first step,
followed by the values from stream 𝑒′ for subsequent steps.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Pipit: Reactive Systems in F★ (Extended Abstract) TyDe ’23, 2023, In submission

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Recursive streams, which can refer to previous values of
the stream itself, are defined using the fixpoint operator
(rec 𝑥. 𝑒 [𝑥]); the syntax 𝑒 [𝑥] means that the variable 𝑥 can
occur in 𝑒 . As in Lustre, recursive streams can only refer to
their previous values and must be guarded by a delay: the
stream (rec 𝑥. 0 fby (𝑥 + 1)) is well-defined, but stream
(rec 𝑥. 𝑥 + 1) is invalid and has no computational interpre-
tation. This form of recursion differs slightly from standard
Lustre, which uses a set of mutually-recursive bindings. We
use this form to define a substitution-based operational se-
mantics that is syntax-directed, as opposed to the mutually-
recursive form in Caspi and Pouzet [6] which is not syntax
directed. The syntax-directed semantics simplifies the proof
of determinism; we believe it has simplified other necessary
proofs too and will perform further evaluation. Although we
cannot express mutually-recursive bindings in the core syn-
tax here, we can express them as a notation on the surface
syntax at the expense of potentially duplicating expressions.

4 Extraction
Pipit can generate executable code which is suitable for real-
time execution on embedded devices. The code extraction is
implemented in a currently-unverified transform that takes
a deeply embedded representation of a Pipit expression and
generates a shallow imperative representation of the pro-
gram. F★ can generate C code from a subset of the language
called Low★ [20]; the result of our translation to impera-
tive code fits in this subset. During code extraction, we use
F★’s tactic support [19] to fully normalise the translation to
imperative code, conceptually similar to staged compilation.

5 Evaluation
To demonstrate the feasibility of Pipit, we have implemented
and verified a simple controller. This system controls a water-
flow solenoid to fill the reservoir of a coffee machine and in-
cludes multiple safeguards to reduce the risk of flooding. The
controller has two boolean inputs: the stop switch and the
low level indicator; it returns a boolean indicating whether
to engage the solenoid. The stop switch indicates whether
the reservoir’s lid is open or closed; the system should never
operate while the lid is open as water could spill out. The
controller should not allow water to flow for more than a
minute as this may indicate a leak; if so, the controller enters
a terminal error state. Finally, to avoid switching the solenoid
too often, the controller waits for ten seconds of low water
level before trying to engage:
let reservoir (stop low: stream B): stream B =

let try = true_for TEN_SECONDS (not stop ∧ low) in
let error = any (true_for ONE_MINUTE try) in
let engage = try ∧ not error in
check (engage =⇒ not stop);
check (engage =⇒ low);
engage

Predicate true_for t is true if a signal has been true for
time 𝑡 ; any is true if a signal has ever been true. As with the
previous examples, the two properties can be automatically
verified. Pipit generates real-time C code for this example2.

6 Related work
Although the FIR filter from section 2 is quite simple, verify-
ing it and executing it with existing Lustre tools is nontrivial.
Lustre itself does not support lists, as dynamically-allocated
data structures are not well-suited to real-time execution.
To write this filter in Lustre we would either need to unroll
the lists ourselves or reformulate the program to use arrays.
However, Vélus does not support arrays [3]; Kind2 uses a cus-
tom syntax for arrays with no compiler support [7]; and the
Lustre V6 compiler does support arrays [15], but its model-
checker Lesar cannot reason about integers or reals [21].

In terms of model-checking reactive systems, recent work
uses SMT solvers to check inductive proofs [7, 13] or to check
refinement types [8]. These model-checkers have definite ad-
vantages over the general-purpose-prover approach offered
here: they can often generate concrete counterexamples and
implement counterexample-based invariant-generation tech-
niques such as ICE [12] and PDR [5, 11]. However, these
model-checkers do not provide much assurance that the
semantics they use for proofs matches the compiled code.
We believe that once Pipit’s imperative code generation is
verified, Pipit will have a stronger assurance case.

The embedded language Copilot generates real-time C
code for runtime monitoring and supports model-checking
properties [17], but suffers from the same semantic gap.

Early work embedding a denotational semantics of Lucid
Synchrone in an interactive theorem prover focussed on the
semantics itself, rather than proving programs [2]. There is
ongoing work to construct a denotational semantics of Vélus
for program verification [4]. We believe that the hybrid SMT
approach of F★ will allow for a better mixture of automated
proofs with manual proofs; however, the trusted computing
base of Pipit is much larger than Vélus, as we depend on all
of F★, Low★’s C code extraction, the SMT solver, as well as
our currently-unverified imperative code generator.

7 Conclusion
Our preliminary results show that F★’s proof automation and
code extraction are suitable for verifying reactive systems
and executing them in real-time; these results still require
further work. Next, we intend to verify the imperative code
generation. To verify large programs, we also need some
way to separately prove smaller pieces which can then be
composed together, such as contracts [7]. Finally, we need to
evaluate Pipit on larger control systems before extending the
language to support more features, such as Lustre’s clocks
for describing partially-defined streams [6].
2For a video of the controller in action, see https://youtu.be/6IybbQFPOl8

3

https://youtu.be/6IybbQFPOl8

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

TyDe ’23, 2023, In submission Amos Robinson and Alex Potanin

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

References
[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfia-

bility Modulo Theories Library (SMT-LIB). www.SMT-LIB.org.
[2] Sylvain Boulmé and Grégoire Hamon. 2001. A clocked denotational

semantics for Lucid-Synchrone in Coq. Rap. tech., LIP6 (2001).
[3] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy,

Marc Pouzet, and Lionel Rieg. 2017. A formally verified compiler
for Lustre. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation.

[4] Timothy Bourke, Paul Jeanmaire, and Marc Pouzet. 2022. Towards
a denotational semantics of streams for a verified Lustre compiler.
TYPES22. https://types22.inria.fr/files/2022/06/TYPES_2022_slides_
28.pdf

[5] Aaron R Bradley. 2011. SAT-based model checking without unrolling.
In Verification, Model Checking, and Abstract Interpretation: 12th In-
ternational Conference, VMCAI 2011, Austin, TX, USA, January 23-25,
2011. Proceedings 12. Springer.

[6] Paul Caspi and Marc Pouzet. 1995. A functional extension to Lustre.
Intensional Programming I (1995).

[7] Adrian Champion, Alain Mebsout, Christoph Sticksel, and Cesare
Tinelli. 2016. The Kind 2 model checker. In Computer Aided Verifica-
tion.

[8] Jiawei Chen, José Luiz Vargas de Mendonça, Shayan Jalili, Bereket
Ayele, Bereket Ngussie Bekele, Zhemin Qu, Pranjal Sharma, Tigist
Shiferaw, Yicheng Zhang, and Jean-Baptiste Jeannin. 2022. Synchro-
nous Programming and Refinement Types in Robotics: From Verifi-
cation to Implementation. In Proceedings of the 8th ACM SIGPLAN
International Workshop on Formal Techniques for Safety-Critical Sys-
tems.

[9] Adam Chlipala. 2013. The Bedrock structured programming system:
Combining generative metaprogramming and Hoare logic in an ex-
tensible program verifier. In Proceedings of the 18th ACM SIGPLAN
international conference on Functional programming.

[10] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2017. Scade 6: A
formal language for embedded critical software development. In 2017
International Symposium on Theoretical Aspects of Software Engineering
(TASE). IEEE, 1–11.

[11] Niklas Eén, Alan Mishchenko, and Robert Brayton. 2011. Efficient im-
plementation of property directed reachability. In 2011 Formal Methods
in Computer-Aided Design (FMCAD). IEEE.

[12] Pranav Garg, Christof Löding, Parthasarathy Madhusudan, and Daniel
Neider. 2014. ICE: A robust framework for learning invariants. In
Computer Aided Verification: 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 18-22, 2014. Proceedings 26. Springer.

[13] George Hagen and Cesare Tinelli. 2008. Scaling up the formal verifi-
cation of Lustre programs with SMT-based techniques. In 2008 Formal
Methods in Computer-Aided Design. IEEE.

[14] Nicolas Halbwachs, Jean-Claude Fernandez, and A Bouajjanni. 1993.
An executable temporal logic to express safety properties and its
connection with the language Lustre. In Sixth International Symp. on
Lucid and Intensional Programming.

[15] Erwan Jahier, Pascal Raymond, and Nicolas Halbwachs. 2016. The
Lustre V6 reference manual. Verimag, Grenoble, Dec (2016).

[16] Kind2. 2023. Integer division rounds to negative infinite. Github issues.
https://github.com/kind2-mc/kind2/issues/978

[17] Jonathan Laurent, Alwyn Goodloe, and Lee Pike. 2015. Assuring the
guardians. In Runtime Verification: 6th International Conference, RV
2015, Vienna, Austria, September 22-25, 2015. Proceedings. Springer.

[18] Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. 1985. The glory of
the past. Springer.

[19] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis,
Chris Hawblitzel, Cătălin Hriţcu, Monal Narasimhamurthy, Zoe
Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, et al. 2019.

Meta-F★: Proof Automation with SMT, Tactics, and Metaprograms. In
Programming Languages and Systems: 28th European Symposium on
Programming, ESOP 2019, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic,
April 6–11, 2019, Proceedings. Springer International Publishing Cham.

[20] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella Béguelin, Antoine
Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric Four-
net, et al. 2017. Verified low-level programming embedded in F★. Proc.
ACM program. lang. 1, ICFP (2017).

[21] Pascal Raymond. 2008. Synchronous program verification with Lus-
tre/Lesar. Modeling and Verification of Real-Time Systems (2008).

Received 1 June 2023

4

https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf
https://github.com/kind2-mc/kind2/issues/978

	Abstract
	1 Introduction
	2 Programming and verifying in Pipit
	2.1 Bounded input, bounded output

	3 Core language
	4 Extraction
	5 Evaluation
	6 Related work
	7 Conclusion
	References

