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Abstract
Reactive languages such as Lustre and Scade are used to
implement safety-critical control systems; proving such pro-
grams correct and having the proved properties apply to
the compiled code is therefore equally critical. We introduce
Pipit, a small reactive language embedded in F★, designed for
verifying control systems and executing them in real-time.
Pipit includes a verified translation to transition systems; by
reusing F★’s existing proof automation, certain safety prop-
erties can be automatically proved by k-induction on the
transition system. Pipit can also generate imperative code in
a subset of F★ which is suitable for compilation and real-time
execution on embedded devices. This translation to impera-
tive code preserves types by construction; the proof that the
imperative code preserves semantics is ongoing.

CCS Concepts: • Computer systems organization→ Em-
bedded software; Real-time languages; • Theory of com-
putation → Program verification; Modal and temporal
logics; • Software and its engineering → Specialized
application languages.

Keywords: Lustre, streaming, reactive, control
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1 Introduction
Safety-critical control systems, such as the anti-lock braking
systems that are present inmost cars today, need to be correct
and execute in real-time. One approach, favoured by parts
of the aerospace industry, is to implement the controllers
in a high-level language such as Lustre [6] or Scade [10],
and verify that the implementations satisfy the high-level
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specification using a model-checker, such as Kind2 [7]. These
model-checkers can prove many interesting properties auto-
matically, but do not provide many options for manual proofs
when the automated proof techniques fail. Additionally, the
semantics used by the model-checker may not match the
semantics of the compiled code, in which case properties
proved do not necessarily hold on the real system. This mis-
match may occur even when the compiler has been verified
to be correct, as in the case of Vélus [3]. For example, in
Vélus, integer division rounds towards zero, matching the
semantics of C; however, integer division in Kind2 rounds
to negative infinity, matching SMT-lib [1, 16].
To be confident that our proofs hold on the real system,

we need a single semantics that is shared between the com-
piler and the model-checker or prover. In this abstract we
introduce Pipit1, an embedded domain-specific language for
implementing and verifying controllers in F★. Pipit aims to
provide a high-level language based on Lustre, while reusing
F★’s proof automation and manual proofs for verifying con-
trollers [19], and using Low★’s C-code generation for real-
time execution [20]. Pipit translates its expression language
to a transition system for k-inductive proofs, which is veri-
fied; verifying the translation to imperative code is ongoing.

In this extended abstract we briefly describe the following
preliminary results, which we intend to describe fully in a
future publication:

• we motivate Pipit which, as an embedded language,
provides syntactic convenience with a small verifiable
core language (section 2);

• we demonstrate the use of F★’s existing normalisation
and proof automation to prove certain properties with
minimal effort (subsection 2.1);

• we describe a key difference between Pipit’s core lan-
guage and Lustre (section 3); and

• we evaluate Pipit by executing a verified controller on
an embedded system (section 5).

2 Programming and verifying in Pipit
A common requirement in controllers is to filter an input sig-
nal, perhaps using a finite impulse response (FIR) filter, which
is equivalent to a weighted moving average. An FIR filter
takes a vector of coefficients and an input signal; at every
point in time, it computes the dot product of the coefficients

1Implementation available at https://github.com/songlarknet/pipit
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and the most recent values of the signal. We can implement
an FIR filter in Pipit as follows:
let fir (coefficients: list R) (signal: stream R): stream R =
match coefficients with
| [] → 0
| 𝑐 :: cs → (signal · 𝑐) + (0 fby (fir cs signal))
The coefficient vector is represented by a list of reals, while

the signal is a stream of reals, and the result is the filtered
stream. The implementation starts by looking at the list of
coefficients and returns zero if the list is empty. If the list is
not empty, then we multiply the most recent value of the
stream by the coefficient (signal · 𝑐); we also take the result
of applying the remaining coefficients to the signal stream
(fir cs signal) and delay it (0 fby . . .) before summing the
two parts. At the start of execution the delay is initially zero.
Pipit is an embedded language, like Bedrock [9]: in this

example, the stream type denotes an actual Pipit expression,
while the list type and its associated pattern match is part
of the F★ meta-language. To get the real Pipit program, we
need to apply the filter to a concrete list of coefficients:
let fir2 (input: stream R): stream R =
fir [0.7; 0.3]input
Normalising this definition evaluates away all of the lists.

The result fits in the core language defined in section 3, for
which we can generate real-time imperative code:
let fir2 (input: stream R): stream R =

(0.7 · input) + (0 fby ((0.3 · input) + (0 fby 0)))
The properties that we want to state about reactive pro-

grams usually involve some temporal aspect. Rather than
defining a separate specification language, we implement
computable variants of temporal operators from past-time
linear temporal logic [14, 18]. We name the past-globally
operator sofar, as in the predicate has been true so far :
let sofar (𝑝: stream B): stream B =

rec 𝑝′. 𝑝 ∧ (true fby 𝑝′)
This definition takes a stream of predicates 𝑝 and intro-

duces a recursive stream 𝑝′. At each step, the recursive
stream 𝑝′ checks that the current predicate is true (𝑝), and
also checks that sofar was previously true (true fby 𝑝′). If
there is no previous value, it defaults to true.

2.1 Bounded input, bounded output
We can now state a bounded-input-bounded-output (BIBO)
property, which says that if the inputs have always been
within some particular range, then the outputs are also
within the range:
let bibo2 (n: R≥0) (input: stream R): stream B =
check (sofar( |input| ≤ 𝑛) =⇒ |fir2 input| ≤ 𝑛)
This property states that if the input has always been in the

range [−𝑛, 𝑛], then the output is alsowithin the range [−𝑛, 𝑛].
Note that the upper bound 𝑛 is a nonnegative real rather
than a stream of reals, which means that 𝑛 stays constant

𝑒, 𝑒′ := 𝑣 | 𝑥 | 𝑒 𝑒′
| 𝑣 fby 𝑒 | 𝑒 ) 𝑒′

| rec 𝑥. 𝑒 [𝑥] | check 𝑒

| let 𝑥 = 𝑒 in 𝑒′ [𝑥]

𝑣 := 𝑛 ∈ N | 𝑏 ∈ B | 𝑟 ∈ R | . . . | __ 𝑥𝑥 . 𝑒𝑒

Figure 1. Pipit core language grammar

across the whole stream. To prove that this property holds,
we translate to a transition system and show that the stream
is always true. In this case, induction over the transition
relation is sufficient to prove the property. There is some
boilerplate required to perform the induction, but both base
and step cases are automatically proved by F★:
let proof2 (n: R≥0): Lemma (induct (bibo2 n)) =

assert (base_case (bibo2 𝑛))by (pipit_simplify ());
assert (step_case (bibo2 𝑛)) by (pipit_simplify ())
This definition uses F★’s lemma syntax to state that the

BIBO property holds inductively for any 𝑛. The two asser-
tions prove the inductive cases separately, using our simplify
tactic to ensure that the translation to transition system is
normalised away, and any translation artefacts are removed.
If we wish to prove a similar BIBO property for a filter

with more coefficients, standard induction over the transi-
tion system is not sufficient: the relationship between the
stacked delays in the filter and sofar is not clear from a single
step of the transition system. One simple automated way
to strengthen invariants is via k-induction [13], which adds
more context by assuming that the property holds for 𝑘 previ-
ous steps of the transition relation. We can define analogous
functions fir3 and bibo3 which operate on the coefficients
[0.7; 0.2; 0.1], and use k-induction for 𝑘 = 2 as follows:
let proof3 (n: R≥0): Lemma (induct_k 2 (bibo3 n)) =

assert (base_case_k 2 (bibo3 𝑛)) by (pipit_simplify ());
assert (step_case_k 2 (bibo3 𝑛)) by (pipit_simplify ())
Although the properties here boil down to simple prop-

erties about linear arithmetic, we believe that this example
demonstrates a promising way to use F★’s existing proof
automation to verify reactive systems.

3 Core language
The grammar of Pipit is defined in Figure 1. The expression
form 𝑒 includes standard syntax for values (𝑣), variables (𝑥)
and applications (𝑒 𝑒′); however, it does not include any form
for defining functions except reusing closed functions from
the F★ meta-language (__ 𝑥𝑥 . 𝑒𝑒 ). Most of the expression forms
were introduced informally in section 2 and correspond to
the clock-free primitives in Lustre [6]. Streams can also be
composed together using the then notation (𝑒 ) 𝑒′) which
denotes that the value of stream 𝑒 is used for the first step,
followed by the values from stream 𝑒′ for subsequent steps.
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Recursive streams, which can refer to previous values of
the stream itself, are defined using the fixpoint operator
(rec 𝑥. 𝑒 [𝑥]); the syntax 𝑒 [𝑥] means that the variable 𝑥 can
occur in 𝑒 . As in Lustre, recursive streams can only refer to
their previous values and must be guarded by a delay: the
stream (rec 𝑥. 0 fby (𝑥 + 1)) is well-defined, but stream
(rec 𝑥. 𝑥 + 1) is invalid and has no computational interpre-
tation. This form of recursion differs slightly from standard
Lustre, which uses a set of mutually-recursive bindings. We
use this form to define a substitution-based operational se-
mantics that is syntax-directed, as opposed to the mutually-
recursive form in Caspi and Pouzet [6] which is not syntax
directed. The syntax-directed semantics simplifies the proof
of determinism; we believe it has simplified other necessary
proofs too and will perform further evaluation. Although we
cannot express mutually-recursive bindings in the core syn-
tax here, we can express them as a notation on the surface
syntax at the expense of potentially duplicating expressions.

4 Extraction
Pipit can generate executable code which is suitable for real-
time execution on embedded devices. The code extraction is
implemented in a currently-unverified transform that takes
a deeply embedded representation of a Pipit expression and
generates a shallow imperative representation of the pro-
gram. F★ can generate C code from a subset of the language
called Low★ [20]; the result of our translation to impera-
tive code fits in this subset. During code extraction, we use
F★’s tactic support [19] to fully normalise the translation to
imperative code, conceptually similar to staged compilation.

5 Evaluation
To demonstrate the feasibility of Pipit, we have implemented
and verified a simple controller. This system controls a water-
flow solenoid to fill the reservoir of a coffee machine and in-
cludes multiple safeguards to reduce the risk of flooding. The
controller has two boolean inputs: the stop switch and the
low level indicator; it returns a boolean indicating whether
to engage the solenoid. The stop switch indicates whether
the reservoir’s lid is open or closed; the system should never
operate while the lid is open as water could spill out. The
controller should not allow water to flow for more than a
minute as this may indicate a leak; if so, the controller enters
a terminal error state. Finally, to avoid switching the solenoid
too often, the controller waits for ten seconds of low water
level before trying to engage:
let reservoir (stop low: stream B): stream B =

let try = true_for TEN_SECONDS (not stop ∧ low) in
let error = any (true_for ONE_MINUTE try) in
let engage = try ∧ not error in
check (engage =⇒ not stop);
check (engage =⇒ low);
engage

Predicate true_for t is true if a signal has been true for
time 𝑡 ; any is true if a signal has ever been true. As with the
previous examples, the two properties can be automatically
verified. Pipit generates real-time C code for this example2.

6 Related work
Although the FIR filter from section 2 is quite simple, verify-
ing it and executing it with existing Lustre tools is nontrivial.
Lustre itself does not support lists, as dynamically-allocated
data structures are not well-suited to real-time execution.
To write this filter in Lustre we would either need to unroll
the lists ourselves or reformulate the program to use arrays.
However, Vélus does not support arrays [3]; Kind2 uses a cus-
tom syntax for arrays with no compiler support [7]; and the
Lustre V6 compiler does support arrays [15], but its model-
checker Lesar cannot reason about integers or reals [21].

In terms of model-checking reactive systems, recent work
uses SMT solvers to check inductive proofs [7, 13] or to check
refinement types [8]. These model-checkers have definite ad-
vantages over the general-purpose-prover approach offered
here: they can often generate concrete counterexamples and
implement counterexample-based invariant-generation tech-
niques such as ICE [12] and PDR [5, 11]. However, these
model-checkers do not provide much assurance that the
semantics they use for proofs matches the compiled code.
We believe that once Pipit’s imperative code generation is
verified, Pipit will have a stronger assurance case.

The embedded language Copilot generates real-time C
code for runtime monitoring and supports model-checking
properties [17], but suffers from the same semantic gap.

Early work embedding a denotational semantics of Lucid
Synchrone in an interactive theorem prover focussed on the
semantics itself, rather than proving programs [2]. There is
ongoing work to construct a denotational semantics of Vélus
for program verification [4]. We believe that the hybrid SMT
approach of F★ will allow for a better mixture of automated
proofs with manual proofs; however, the trusted computing
base of Pipit is much larger than Vélus, as we depend on all
of F★, Low★’s C code extraction, the SMT solver, as well as
our currently-unverified imperative code generator.

7 Conclusion
Our preliminary results show that F★’s proof automation and
code extraction are suitable for verifying reactive systems
and executing them in real-time; these results still require
further work. Next, we intend to verify the imperative code
generation. To verify large programs, we also need some
way to separately prove smaller pieces which can then be
composed together, such as contracts [7]. Finally, we need to
evaluate Pipit on larger control systems before extending the
language to support more features, such as Lustre’s clocks
for describing partially-defined streams [6].
2For a video of the controller in action, see https://youtu.be/6IybbQFPOl8
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