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Abstract. Correctness-by-Construction (CbC) is an incremental program construction
process to construct functionally correct programs. The programs are constructed stepwise
along with a specification that is inherently guaranteed to be satisfied. CbC is complex to
use without specialized tool support, since it needs a set of predefined refinement rules of
fixed granularity which are additional rules on top of the programming language. Each
refinement rule introduces a specific programming statement and developers cannot depart
from these rules to construct programs. CbC allows to develop software in a structured
and incremental way to ensure correctness, but the limited flexibility is a disadvantage
of CbC. In this work, we compare classic CbC with CbC-Block and TraitCbC. Both
approaches CbC-Block and TraitCbC, are related to CbC, but they have new language
constructs that enable a more flexible software construction approach. We provide for
both approaches a programming guideline, which similar to CbC, leads to well-structured
programs. CbC-Block extends CbC by adding a refinement rule to insert any block of
statements. Therefore, we introduce CbC-Block as an extension of CbC. TraitCbC
implements correctness-by-construction on the basis of traits with specified methods. We
formally introduce TraitCbC and prove soundness of the construction strategy. All
three development approaches are qualitatively compared regarding their programming
constructs, tool support, and usability to assess which is best suited for certain tasks and
developers.
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1. Introduction

Correctness-by-Construction (CbC) [Dij76, Gri87, KW12, Mor94] is a methodology in the
field of formal methods to incrementally construct functionally correct programs guided by
a pre-/postcondition specification.1 In contrast to post-hoc verification, where a program
is typically specified and verified after implementing it, CbC is based around successively
creating a program together with the specification. This is achieved by applying refinement
rules from a small set of defined rules where in each refinement step, an abstract statement
(i.e., a hole in the program) is refined to a more concrete implementation that can still
contain some nested abstract statements. While refining the program, the correctness of
the whole program is guaranteed through applicability conditions that are defined in the
refinement rules. The construction ends when no abstract statement is left.

The underlying idea of this specification-first, refinement-based approach is that de-
velopers are forced to think about their algorithm more thoroughly rather than having a
trial-and-error verification approach. This trial-and-error verification can oftentimes be
experienced with post-hoc verification because programs are implemented first and therefore
not well-structured for the verification process which leads to tedious verification work.
Additionally, through the structured reasoning discipline that is enforced by the refinement
rules in CbC, errors are more likely to be detected earlier in the design process, and it is
argued that program quality increases and verification effort is reduced [KW12, WKSC16].

Despite these benefits, CbC intuitively has a drawback: The flexibility of creating a
program is limited to the set of refinement rules and the rigid, rule-based construction
process of applying one rule at a time. This is even increased by the granularity of the rules
which explicitly only allow to use one language construct at a time (e.g., one assignment
to a variable). Additionally, the refinement rules extend the programming language (i.e.,
refinement rules are an additional linguistic construct to transform programs), and therefore
special tool support (e.g., CorC [RSC+19, BCK+22]) is necessary to introduce the CbC
refinement process to a programming language. As a result, the barrier to construct
programs using CbC is large because the approach at first seems unintuitive and requires
effort, knowledge, and special tool support.

In this article, we introduce two alternative correctness-by-construction development
approaches that relax the inflexible CbC construction approach without losing the benefits
of CbC itself. Both introduce more flexible language constructs to create programs which
allow to condense construction steps that tackle the complex and strict programming style
of CbC. The goal is to propose a usable CbC apporach that offers reasonable constructs to
develop programs correctly. Therefore, we qualitatively discuss our two proposed approaches
and the original CbC approach regarding their programming constructs, tool support, and
usability to assess their benefits and drawbacks.

First, we present CbC-Block which adds new refinement rules. This introduction
of new refinement rules should not be seen as a further restriction, but as a relaxation of
the procedure. These new refinement rules increase the ways in which programs can be
developed as they allow to refine abstract statements to a specified block of code that fulfills
its specification. This basically means that this block can contain multiple assignments,

1The approach should not be confused with other CbC approaches such as CbyC of Hall and Chap-
man [HC02]. CbyC is a software development process that uses formal modeling techniques and analysis for
various stages of development (architectural design, detailed design, code) to detect and eliminate defects as
early as possible [Cha06]. We also exclude data refinement from abstract data types to concrete ones during
code generation as for example in Isabelle/HOL [HKKN13].
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selections, or loops whereas with classic CbC for each assignment, selection, and loop a
new refinement step is needed. Initially, a block is just an abstract placeholder, but it has
a pre-/postcondition specification so that the introduced specification of the block can be
checked against the specification of the refined abstract statement. In a next step, the
block is instantiated by some code, and it is directly proved that this code fulfills its own
specification. The idea of the block rules is similar to a method call, but a block can alter
local variables in the method under construction. A block of code can contain further
blocks which can be subsequently refined. Consequently, any nesting of blocks may occur.
CbC-Block is implemented as extension of the CorC tool support.

Second, we present TraitCbC which is a new software development approach that
enables correct-by-construction development by method abstraction and method compo-
sition without relying on refinement rules and special tool support. TraitCbC uses
traits [DNS+06], which are a flexible object-oriented language construct supporting a rich
form of modular code reuse orthogonal to inheritance. A trait is a set of concrete or abstract
methods (i.e., the method has either a body or has no body).2 Traits can be composed
into a larger trait or into a class that contains all methods of all composed traits. Trait
composition exists as a direct concept of the programming language [DNS+06] instead
of being a program transformation concept, such as the CbC refinement rules. On the
basis of traits, TraitCbC introduces a programming guideline for an incremental program
construction approach that guarantees that the resulting program is correct by construction.
A construction step comprises the development of a method and direct composition with
the existing code base to ensure correctness. TraitCbC allows the implementation of any
method size and complexity as long as the methods are composable with respect to their
specification. Even with this flexibility, TraitCbC keeps the advantages of a structured
incremental development approach.

The contribution of our article is to demonstrate and compare the range of possibilities
to develop programs correct by construction from strict rule-based CbC to the more relaxed
CbC-Block to TraitCbC without any refinement rules. In this article, we introduce
TraitCbC and explain the typing, reduction, and flattening rules. We give a proof that
TraitCbC guarantees to develop programs correct by construction. We also present the
CbC-Block approach with the block refinement rules. All approaches are implemented
in the CorC [RSC+19] tool support. We compare and discuss classic CbC, CbC-Block,
and TraitCbC qualitatively to assess their benefits and drawbacks. This article extends
previous work [RPTS22] by introducing the typing and reduction rules of TraitCbC in
detail. The soundness proof of TraitCbC is also presented in this article. CbC-Block is
a new approach that has not been presented before.

2. Correctness-by-Construction

Classic correctness-by-construction (CbC) [Dij76, KW12, Mor94] is an incremental approach
to construct programs. CbC uses a Hoare triple specification {P} S {Q} stating that if the
precondition P holds, and the statement S is executed, then the statement terminates and
postcondition Q holds. The CbC refinement process starts with a Hoare triple where the
statement S is abstract. This abstract statement can be seen as a hole in the program that
needs to be filled. With a set of refinement rules, an abstract statement is replaced by more

2Java interfaces with default methods are a good approximation for what has been called trait in the
literature
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Definition 1: Refinement Rules for the Correctness-by-Construction Approach

Let P be the precondition, Q be the postcondition, and S be an abstract statement.
Then, the Hoare triple {P}S{Q} is refinable to

• Skip: {P}skip{Q} iff P implies Q
• Assignment: {P} x := E{Q} iff P implies Q[x := E]
• Composition: {P}S1;S2{Q} iff intermediate condition M exists such that
{P}S1{M} and {M}S2{Q} hold
• Selection: {P}if G1 → S1 elseif . . . Gn → Sn fi{Q} iff P implies G1 ∨ · · · ∨Gn

and ∀i ∈ {1 . . . n} : {P ∧Gi}Si{Q} holds
• Repetition: {P}do [I, V ] G → S od{Q} iff P implies I and I ∧ ¬G implies Q

and {I ∧G}S{I} holds and {I ∧G ∧ V = V0}S{I ∧ 0 ≤ V < V0} holds
• Weaken precondition: {P ′}S{Q} iff P implies P ′

• Strengthen postcondition: {P}S{Q′} iff Q′ implies Q
• Method Call: {P}m(a1, . . . , an) → b{Q} iff method {P ′}m(p1, . . . , pn) → r{Q′}

exists and P implies P ′[pi \ ai] and Q′[old(pi) \ old(ai), r \ b] implies Q

[RSC+19, KW12]

concrete statements (i.e., statements in the guarded command language [Dij76] that can
contain further abstract statements). The process stops, when all abstract statements are
refined to concrete statements so that no holes remain in the program. As each refinement
rule is sound and each correct application of a refinement rule guarantees to satisfy the
starting Hoare triple, the resulting program is correct by construction [KW12]. The CbC
approach is strictly tied to this set of predefined refinement rules. A developer cannot
deviate from this concept.

In Definition 1, we present the eight refinement rules of CbC by Kourie and Wat-
son [KW12]. The concrete program statements are written in the guarded command
language [Dij75]. To apply a refinement rule, it has to be checked that side conditions
of the rule application are satisfied. This is done by pen-and-paper or with specialized
tools [RSC+19]. For example, the skip rule introduces an empty statement that does not
alter the program state. This refinement is applicable if and only if the precondition P
implies the postcondition Q. The composition rule splits the Hoare triple {P}S{Q} into
two Hoare triples by using an intermediate condition M . This refinement is applicable, if
and only if the two new Hoare triples are correct. Of course, the statements S1 and S2 are
still abstract and can be further refined.

3. CbC-Block— CbC With Block Contracts

In this section, we introduce the CbC-Block approach that adds two new refinement rules
to classic CbC. The new refinement rules increase the ways to construct programs. Therefore,
the rigid CbC approach is loosened while retaining the benefits of a structured program
construction approach. A block rule refines an abstract statement to a block that is specified
with a block contract (i.e., a pre-/postcondition specification for that block) [ABB+16].
The block is a special statement that can be further refined in two ways. Similar to an
abstract statement, any CbC refinement rules can be applied. Additionally, the block can
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be instantiated by any sequence of concrete statements and further blocks with a block-
instantiation rule. Thus, a block can be used to condense the application of several CbC
refinement rules. For example, a block can be instantiated with a while-loop that already
contains a concrete body. This instantiation replaces the application of the repetition rule
and at least one assignment rule. We introduce CbC-Block with a motivating example
and present the block rules to introduce and instantiate blocks. In the end of this section,
we present CbC-Block implemented in the CbC tool CorC3 and evaluate its usability
with a user study.

3.1. Motivating Example. In this section, we exemplify the CbC-Block approach by
implementing a maxElement algorithm. The maxElement algorithm searches the largest element
in a list of integers. The list supports a get-method which returns the element at the specified
position in this list. A contains-method checks that the result is a member of the list. We
iterate with a while-loop through the list and use local variables to temporally save the
current largest element. We use Java and JML [LBR98] as programming and specification
language in the example.

In Listing 1, we start implementing method maxElement that is specified with a pre- and
postcondition contract. The precondition states that the list must contain at least one
element. The postcondition states that the largest element in the list is returned. In this
example, we start with a program where some CbC refinement rules are already applied,
and then, apply the block rules to finish the implementation.

The program is already split into three parts using the composition refinement rule with
two intermediate conditions between them. In the first part, two local variables i and j are
introduced with the assignment rule. The variable i is used to temporally store the largest
element. In the beginning, the largest element (up to that point) is the first element in the
list. The variable j is our loop variable to iterate through the list. In the third program
part, variable i is returned. We start with this program state to show that CbC-Block
also supports the standard CbC approach, but we will now use the block rules to exemplify
the benefits of CbC-Block.

In the second part between the two intermediate conditions, the block rule of CbC-
Block is applied. The block B1 is specified with a block contract in lines 13–16. For
the functional behavior, we specify the values of i and j, and the size of the list in the
precondition. This specification is equal to the preceding intermediate condition. The
postcondition of the block states that i is the largest element. This postcondition meets
the intermediate condition after the block. Therefore, we know that the program is correct
under the assumption that block B1 fulfills its specification. In the next steps, we concretize
the block, and the applied refinement rule guarantees that the instantiated block is correct
according to its specification. We can concretize the block either in one step, by instantiating
the block with concrete Java code or stepwise by instantiating the block with some Java
statements and other blocks.

We decide to partially implement the block. In Listing 2, we define the block that should
be refined by referring to block B1 in line 1 and repeat the specification of that block. Inside
the curly brackets the instantiation is shown. We implement the block with a while-loop.
We iterate through the list as long as variable j is smaller than the size of the list. This is
stated in the loop guard. The loop is specified with a loop invariant in lines 10–12. Thereby,

3https://github.com/KIT-TVA/CorC

https://github.com/KIT-TVA/CorC
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1 /*@ public normal_behavior

2 @ requires list.size() > 0;

3 @ ensures list.contains(\result) &&

4 @ (\forall int q; q >= 0 && q < list.size (); \result >= list.get(q));

5 @*/

6 public int maxElement(List list) {

7 int i = list.get (0);

8 int j = 1;

9

10 //@ Intm: list.size() > 0 && i == list.get (0) && j == 1;

11

12 /*@

13 @ normal_behavior

14 @ requires list.size() > 0 && i == list.get(0) && j == 1;

15 @ ensures list.contains(i) &&

16 @ (\forall int q; q >= 0 && q < list.size (); i >= list.get(q));

17 @*/

18 { \Block B1; }

19

20 //@ Intm: list.contains(i) &&

21 //@ (\forall int q; q >= 0 && q < list.size (); i >= list.get(q));

22

23 return i;

24 }

Listing 1: Initial program of maxElement

the variable i stores the largest element of the already checked elements up to the index
j. The index j is inside the bounds of the list. We use the difference between the size
of the list and j as loop variant. As variable j increases in each iteration, the difference
decreases, and the loop thus terminates. The increase of j is already implemented at the
end of the while-loop. The body of the loop contains another block B2 in lines 15–22. The
precondition of the block is the loop invariant with the difference that we know that variable
j is smaller than the size of the list. This block should update variable i that contains the
largest element. We want to compare the largest element with the next element in the list.
If that element is larger, variable i is updated. We checked one more element of the list,
and therefore, we increase the range of the universal quantifier in the postcondition. This
instantiation condenses the application of three CbC refinement rules, the repetition rule to
create the loop, a composition rule, and an assignment rule for the loop body.

The next step is to verify that the instantiation satisfies the block contract. Starting
with the precondition and after executing the introduced instantiation, the postcondition of
the block contract must be fulfilled. The details of checking this instantiation are explained
in the next section. When the correctness of this instantiation is shown, we can continue to
instantiate the next block B2.

In Listing 3, the instantiation of block B2 implements the case when a larger element is
found. The functional pre- and postcondition of the block differ by the range of considered
elements. In the postcondition, the range is increased by one. In this block, we compare the
current largest element i with the element at index j. If the element at index j is larger, we
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1 Block B1;

2

3 /*@

4 @ normal_behavior

5 @ requires list.size() > 0;

6 @ ensures list.contains(i) &&

7 @ (\forall int q; q >= 0 && q < list.size (); i >= list.get(q));

8 @*/

9 {

10 //@ loop_invariant list.contains(i) && j > 0 && j <= list.size() &&

11 //@ (\forall int q; q >= 0 && q < j; i >= list.get(q));

12 //@ decreases list.size() - j;

13 while (j < list.size ()) {

14

15 /*@

16 @ normal_behavior

17 @ requires list.contains(i) && j > 0 && j < list.size() &&

18 @ (\forall int q; q >= 0 && q < j; i >= list.get(q));

19 @ ensures list.contains(i) && j > 0 && j < list.size() &&

20 @ (\forall int q; q >= 0 && q < j+1; i >= list.get(q));

21 @*/

22 { \Block B2; }

23

24 j = j + 1;

25 }

26 }

Listing 2: Refinement of block B1

update variable i. In the other case, i is still the largest element and not updated. Again,
we condense CbC refinement rules by instantiating the block with concrete code. We have
to verify that the instantiation is correct. If this is done, we have finished the refinement
process because no further block or any abstract statement is left.

By guaranteeing the correctness of all refinement steps, we can conclude that the whole
program is correct by construction. The resulting program is shown in Listing 4. Here,
the blocks are recursively replaced with their instantiation. The specification is limited to
the method contract and the loop invariant and variant annotations. By stepwise refining
the program, we can detect errors when proving single refinement steps. This locality of
information helps to track down errors more easily than with monolithic post-hoc verification.

3.2. Block Refinement Rules of CbC-Block. In this section, we describe how refinement
rules are added to establish the CbC-Block approach. We describe the refinement rule to
introduce a block and the refinement rule to instantiate a block with concrete code.

For the block rules to be syntactically applicable, we extend Java to write a block with a
name. Normally, a block in Java is just a sequence of Java statements inside curly brackets.
In addition, Ahrendt et al.[ABB+16] defined block contracts to specify the behavior of a
Java block similar to a method [Mey92, Lei95]. To establish a CbC refinement process, we
introduce a specified block as an abstract statement in CbC-Block with an according
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1 Block B2;

2

3 /*@

4 @ normal_behavior

5 @ requires list.contains(i) && j > 0 && j < list.size() &&

6 @ (\forall int q; q >= 0 && q < j; i >= list.get(q));

7 @ ensures list.contains(i) && j > 0 && j < list.size() &&

8 @ (\forall int q; q >= 0 && q < j+1; i >= list.get(q));

9 @*/

10 {

11 if (list.get(j) > i) {

12 i = list.get(j);

13 }

14 }

Listing 3: Refinement of block B2

1 /*@ public normal_behavior

2 @ requires requires list.size() > 0;

3 @ ensures list.contains(\result) &&

4 @ (\forall int q; q >= 0 && q < list.size (); \result >= list.get(q));

5 @*/

6 public int maxElement(List list) {

7 int i = list.get (0);

8 int j = 1;

9 //@ loop_invariant list.contains(i) && j > 0 && j <= list.size() &&

10 //@ (\forall int q; q >= 0 && q < j; i >= list.get(q));

11 //@ decreases list.size() - j;

12 while (j < list.size ()) {

13 if (list.get(j) > i) {

14 i = list.get(j);

15 }

16 j = j + 1;

17 }

18 return i;

19 }

Listing 4: Final implementation of maxElement

refinement rule. In the refinement rule, we use the Hoare triple notation that is also used for
the classic CbC refinement rules. We focus on functional pre-/postconditions and exclude
regular and irregular termination of blocks for CbC-Block. For the instantiation of a block
(e.g., to write a sequence of Java statements that fulfill the specification), we follow the
syntax of a concrete block in Java, but we add a name for reference.

An abstract statement is refined by the block-introduction rule to a block with a name
and a block contract. Thus, a block name is an abstract placeholder. The side condition
of the refinement rule guarantees the correctness of the program to be developed. For
the block-introduction rule, we have to check three parts. First, the precondition of the
refined abstract statement must imply the precondition of the block. This ensures that the
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pre-state of the block is satisfied, and the block can be executed. Second, the postcondition
of the block must imply the postcondition of the refined abstract statement to continue the
program after the block. Third, the block must satisfy its own contract. As the block can
be seen as a Hoare triple, any CbC refinement rule can be applied to the block. The check
of the side condition of the applied refinement rule guarantees the correctness of the block
under development.

Rule 1 (Block-Introduction). Hoare triple {P}S{Q} is refinable to {P ′} Block B {Q′}
iff P implies P ′ and Q′ implies Q and {P ′} Block B {Q′} holds.

With the block-instantiation rule, we allow to instantiate a block with concrete code
that can contain further blocks (see the instantiation in Listing 2). For application, it must
be checked that this instantiation fulfills the block contract. We use the capabilities of
program verification. We translate the block to a method and verify whether this translated
block-method fulfills its contract. Thus, we have to prove that the dynamic formula P →
<statement;...>Q is fulfilled. Assuming the precondition, the postcondition must be satisfied
after executing the statements in the block. Dynamic logic extends first-order logic with
two operators. A diamond modality <p>Q and a box modality [p]Q with a program p and a
dynamic logic formula Q. Intuitively, the diamond modality states total correctness of the
program, and partial correctness is stated with the box modality.

The translation from a block to a block-method is as follows. The block contract is
translated to the contract of the block-method. The translated block-method is added to the
same class as the method in which the block is declared. The statements within the block
become the body of the block-method. As block could introduce local variables that are
already declared in the surrounding method [KFFD86], an α-conversion [Bar84] is necessary
to safely rename identifiers. A block does not have the same scope of a complete method and
neither has parameters nor a return type. Declarations of parameters and local variables have
to be added to the block-method, so that is has the same scope as the method. Therefore, we
translate accessible variables of the block to parameters of the block-method, and assignable
variables of the block to fields of the class containing the block-method. This differentiation
is done because a contract can only access parameter values before execution of the method,
but it can access the modified values of fields. Accessible or assignable fields of the class
are usable because the block-method is added to the class for verification purposes. The
return type of the block-method is void because we exclude the use of return statements
inside the block. This transformation is limited in its expressiveness as we are excluding
irregular termination, but sufficient to demonstrate the correctness-by-construction process
for normal execution.

Rule 2 (Block-Instantiation). Hoare triple {P} Block B {Q} is refinable to
{P} <statement;...> {Q} iff P → <statement;...> Q, where <statement;...> is any sequence
of concrete program statements possibly containing further blocks.

3.3. Discussion. In this subsection, we discuss the block refinement rules in comparison
to related approaches that allow to introduce code sequences, such as method calls, macro
expansions, and abstract execution.
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Difference to the Method Call Rule. The difference between the block refinement rules
and the method call refinement rule is that for a method call only the contract is used to
verify correctness of the caller. The content of the method is assumed to be correct with
respect to the method’s contract. With the block rules, both the contract and the content
of the block are always checked for correctness. A big difference between the block rules
and the method call rule is their scope. In a method, only variables of the method are
changed and no local variables of the calling context. A block allows the modification of
local variables as demonstrated in the motivating example.

Difference to Macro Expansion. Macro expansion is a textual transformation of input
source code. A preprocessor replaces macros with concrete source code. This is similar to the
block-instantiation rule, where a block name is replaced with concrete source code. As for
our block-instantiation rule, a macro expansion can capture identifiers already used in the
surrounding scope. Therefore, hygienic macro expansion uses α-conversion [Bar84] to rename
identifiers. The difference to CbC-Block is that CbC-Block demands a specification for a
block that is introduced in the block-introduction rule. Additionally, the block-instantiation
rule starts a procedure that verifies whether the block instantiation fulfills its specification.
A macro expansion is just a transformation of code.

Abstract Execution for Correctness-by-Construction. Abstract execution [SH19] is
a technique to specify and verify programs with partially abstract parts. Abstract execution
generalizes symbolic execution. It is tailored to Java, but the principles are applicable
to other sequential languages. Java and JML are extended with the concept of abstract
program element (APE); an abstract statement or an abstract expression. An APE is a
placeholder for any program part with or without side effects. To verify the correctness of
programs containing abstract program elements, these elements are specified with a contract
similar to a block contract. The extended specification language of abstract execution allows
to specify the behavior of the program element in cases of regular or irregular termination
including side effects [SH19]. The strength of abstract execution is the reasoning of irregular
termination that we exclude in CbC-Block.

APEs can be used similar to blocks of CbC-Block to establish a process for refinement-
based program construction. With abstract execution, we write programs containing APEs.
These programs can be verified to be correct under the assumption that the APEs fulfill their
specifications. In a refinement step, an APE is replaced by a program part that contains
concrete statements and possibly other abstract program elements. We have to verify that
the insertion fulfills the specification of the refined APE. This refinement is repeated until
no APE remains. Similar to classic CbC, this process does not require a program to be
monolithically verified, but it is sufficient that each APE replacement is verified to conclude
that the program is correct by construction. This process is the same as for CbC-Block
if we always instantiate a block without using any other CbC refinement rule. We still
argue that the application of other CbC refinement in tandem with blocks is beneficial
because they enforce a structured program construction process where developers think
about the implementation more thoroughly. Therefore, we decided for CbC-Block as
presented instead of utilizing abstract execution because CbC-Block is the sweet spot
between expressiveness and changes to the program construction process of classic CbC.
Combining classic CbC refinement rules with abstract execution requires major changes to
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classic CbC, so that the strength of abstract execution is usable (i.e., the refinement rules
must be adapted to consider irregular termination).

3.4. Implementation. In this subsection, we describe the implemented tool support for
CbC-Block. Classic CbC is already supported by the CorC tool [RSC+19]. CorC has a
graphical and a textual editor to develop programs. In this work, we extend CorC with
the new rules of CbC-Block. The textual IDE is implemented in Eclipse with Xtext.4

Xtext provides the functionality to develop IDEs for domain-specific languages. We use
Xtext to establish an editor for CorC-programs that consist of JML, Java, and the CbC-
specific keywords. The grammar of a CorC-program, which represents a refinement-based
construction according to CbC, is defined in Xtext. Based on this grammar, Xtext supports
syntax checks, highlighting and auto completion.

In CorC, we implemented the refinement rules of Definition 1. For CbC-Block, we
added refinement rules of block-introduction and block-instantiation. An instantiation is
written in a separated program starting with the name of the refined block and followed by
the contract and the block’s implementation. To verify that a block-instantiation fulfills
its block contract, a generator is implemented. It transforms a block-instantiation to a
method and starts the verification process by calling KeY [ABB+16]. The transformation to
a method follows the concept presented for the block-instantiation rule before. The generator
also creates the final method implementation if all refinement steps are proven. All block
instantiations must be recursively inserted to get the final method implementation. The
final method implementation can be integrated into an existing code base. This generator
can also construct partial methods when some parts are not fully refined. This is helpful in
intermediate steps of the construction to retain an overview of the current method.

3.5. Evaluation with a User Study. We evaluate CbC-Block with a user study. We
compare CbC-Block with classic CbC by (dis)allowing the use of the block rules to answer
the following research question.

RQ1: Does the CbC-Block approach improve classic CbC in terms of usability?

In the user study, we engaged five participants that know classic CbC and the CorC
tool. Knowledge of classic CbC and CorC is a necessary prerequisite because a new feature
was evaluated that could only be understood if the participants already knew the classic
CbC approach in CorC. Then, they can estimate the benefits of the new block refinement
rules. With this small number of participants, it was possible that everyone could solve the
study tasks consecutively.

Each participant had to implement two algorithms, one algorithm with CbC-Block
and the block rules and one algorithm with classic CbC and without the block rules. The
algorithms are maxElement and dutchFlag. The maxElement algorithm was already introduced as
the motivating example. The dutchFlag algorithm sorts a list containing only three different
elements. In the original description, each element has either a red, a blue or a white color.
The elements of the list are to be reordered so that the list results in the national flag of the
Netherlands (red, white, blue). We adapted the task to a list that contains an unknown
quantity of the numbers 0, 1, and 2. Both algorithms can be implemented in a few lines
of code with one loop through the list of elements. As both algorithms are explained to
the participants, we expected that the correct implementation is possible without major

4https://www.eclipse.org/Xtext/

https://www.eclipse.org/Xtext/
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problems. For each task, they had 30 minutes. We split the participants in two groups using
the Latin Square design [WRH+12]. Each group implemented the algorithms in the same
order, but the approaches were used crosswise to address possible learning effects through an
order of the tools. After implementing both algorithms, we conducted a structured interview.
The questions of the interview are presented in Appendix A.

We summarize the most important answers of the participants and discuss the findings.
The tasks were correctly solved by all participants. In general, the participants needed
more time for the task with CbC-Block than for the task with classic CbC. As we only
had five participants, these statistics are only of limited significance. The participants
followed the CbC-Block approach and refined a program stepwise using the block rule.
All participants considered the introduction of the block rules to be useful. The rules save
the application of other CbC refinement rules during construction. For CbC-Block, the
participants positively mentioned the familiarity with a textual editor, the grouping of
statements for one refinement step by using a block, and the freedom to not be bound to
the classic CbC refinement rules. For classic CbC, the answers are in line with previous user
studies [RTC+19, RBTS21]. The participants positively mentioned the visual overview of
the refinements and the status of the verification. They liked the fine-grained feedback for
every applied refinement rule. As CbC-Block extends CbC, these positive answers also
apply for CbC-Block. The participants stated for both approaches that the incremental
construction helps to track down errors. The participants still miss more assistance if a
proof cannot be closed.

While we observed the participants, we noticed that both approaches need a correct
and sufficient specification as a starting point. If that is the case, refining and checking
side-conditions can be very successful. If, on the contrary, the specification needs to be
adjusted in the process, the effort to verify the program increases drastically. With classic
CbC, the participants are forced into the process of refining and verifying top-down. With
CbC-Block, the participants have more freedom to develop the program.

Regarding the finished tasks, all participants had experience with CorC. Therefore, it
is not surprising that all participants finished the task. They never used CbC-Block before,
but the participants conceptually understood the features of CbC-Block and accepted the
expansion well. Nonetheless, the participants need more time to fully understand the IDE
and the programming workflow of CbC-Block. This results in a longer time to implement
the algorithms.

We can answer RQ1 that CbC-Block is a promising feature to increase the usability
of CorC, but as for each new feature, developers need time to get used to. Some answers of
the participants highlight that with more training and better tool support, they are willing
to use the CbC-Block approach to construct correctness-critical programs.

Threats to Validity. In our user study, we had only five participants. Due to the small
number of participants, the qualitative results that we collected in the structured interview
are not generalizable. Nevertheless, the results are relevant, since the users are experts in
CorC and can therefore assess the advantages of the extension. A more comprehensive
evaluation with non-experts is not possible because they cannot properly interact with the
tool. The participants only implemented and verified two small algorithms in our experiment,
and therefore, we cannot generalize the results to larger problems.
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4. TraitCbC

In this section, we introduce TraitCbC with a motivational example. We present
TraitCbC formally and prove soundness of the TratiCbC program construction approach.
In the end of this section, we show the proof-of-concept implementation and a feasibility
evaluation.

TraitCbC uses method abstraction and method composition to enable an incremental
CbC-based development approach. This approach on method level allows a flexible way to
construct the desired program with any number and size of auxiliary methods. A developer
starts by implementing a method (e.g., a method a) in a first trait. Similar to classic CbC,
the method can contain holes that are refined in subsequent steps. A hole in TraitCbC
is an abstract method (e.g., an abstract method b) that is called in method a; that is, a
call to an abstract method corresponds to an abstract statement in classic CbC. In the next
step, one of these new abstract methods (e.g., b) is implemented in a second trait, again
more abstract methods can be declared for the implementation. To be correct, it must be
proven that each implemented method satisfies its specifications. Afterwards, the traits are
composed; the composition operation checks that the specification of the concrete method
b in the second trait fulfills the specification of the abstract method b in the first trait.
This incremental program construction approach stops when the last abstract method is
implemented, and all traits are composed.

4.1. Motivating Example. We illustrate using an example of how TraitCbC enables
CbC using traits. We use an object-oriented language in the code examples. In Listing 5,
we construct a method maxElement that finds the maximum element in a list of numbers.
We slightly adjust the implementation of the algorithm to better fit for TraitCbC. With
TraitCbC, we have an abstraction on method level. We utilize methods to outsource
program pieces that can be reused (i.e., we want to implement methods that are verified
once, but called several times in a program to reduce verification effort).

In this maxElement example, a list has a head and a tail. Only non-empty lists have a
maximum element. This is explicit in the precondition of our specification, where we require
that the list has at least one element. In the postcondition, we specify that the result is in
the list and larger than or equal to every other element. In the first step, we create a trait
MaxETrait1 that defines the abstract method maxElement. The method maxElement is abstract,
i.e., equivalent to an abstract statement in CbC.

1 trait MaxETrait1 {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result >= n)

5 abstract Num maxElement(List list);

6 }

Listing 5: Initial trait for maxElement

In the second step in trait MaxETrait2 in Listing 6, we implement the method maxElement

using two abstract methods. We introduce an if-elseif-else-expression where the branches
invoke abstract methods. The guards check whether the list has only one element or whether
the current element is larger than or equal to the maximum of the rest of the list. The
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abstract method accessHead returns the current element, and the abstract method maxTail

returns the maximum in the remaining list. So, we recursively search the list for the largest
element by comparing the maximum element of the list tail with the current element until
we reach the end of the list.

1 trait MaxETrait2 {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result >= n)

5 Num maxElement(List list) =

6 if (list.size() == 1) {accessHead(list)}

7 elseif (accessHead(list) >= maxTail(list))

8 {accessHead(list)}

9 else {maxTail(list)}

10

11 @Pre: list.size() > 0

12 @Post: result == list.element ()

13 abstract Num accessHead(List list);

14

15 @Pre: list.size() > 1

16 @Post: list.tail (). contains(result) &

17 (forall Num n: list.tail (). contains(n) ==> result >= n)

18 abstract Num maxTail(List list);

19 }

Listing 6: Implementation of maxElement with auxiliary methods

The correct implementation of the method maxElement can be guaranteed under the
assumptions that all introduced abstract methods are correctly implemented. Similar to
post-hoc verification, a program verifier conducts a proof of method maxElement and uses the
introduced specifications of the methods accessHead and maxTail. If the proof succeeds, we
know that the first method is correctly implemented. In our incremental CbCTrait approach,
we verify each method implementation directly after construction; and so we are able to
reuse each implemented method in the following steps (e.g., by calling the method in the
body of other methods).

We now compose the developed traits to complete the first construction step. To
perform the composition MaxETrait1 + MaxETrait2, we check that the specification of the
method maxElement fulfills the specification of the abstract method in the first trait (cf. Liskov
substitution principle [LW94]). In this case, this means checking that:
MaxETrait1.maxElement(..).pre ==> MaxETrait2.maxElement(..).pre as well as:
MaxETrait2.maxElement(..).post ==> MaxETrait1.maxElement(..).post.
When the composition of two verified traits is successful, the result is also a verified trait.
Note that the composed trait does not need to be verified directly by a program verifier in
TraitCbC because it is correct by construction. In this example, the specifications are the
same, thus checking for a successful composition is trivial, but this is not generally the case.
In particular, the logic needs to take into account ill-founded specifications and recursion in
the specification. We discuss more about the difficulties of handling those cases in previous
work [RPTS22].
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The methods accessHead and maxTail are implemented in the next two construction steps
in traits MaxETrait3 and MaxETrait4

5. The implementations are shown in Listing 7 and in
Listing 8. As we implement a recursive method, the method maxTail calls the maxElement

method, thus maxElement is introduced as an abstract method in this trait. We have to verify
that the method accessHead satisfies its specification using a program verifier. Similarly, we
have to verify the correctness of the method maxTail.

1 trait MaxETrait3 {

2 @Pre: list.size() > 0

3 @Post: result == list.element ()

4 Num accessHead(List list) = list.element ()

5 }

Listing 7: Implementation of accessHead

1 trait MaxETrait4 {

2 @Pre: list.size() > 1

3 @Post: list.tail (). contains(result) &

4 (forall Num n: list.tail (). contains(n) ==> result >= n)

5 Num maxTail(List list) = maxElement(list.tail ())

6

7 @Pre: list.size() > 0

8 @Post: list.contains(result) &

9 (forall Num n: list.contains(n) ==> result >= n)

10 abstract Num maxElement(List list);

11 }

Listing 8: Implementation of maxTail

As before, all traits are composed, and it is checked that the specifications of the
concrete methods fulfill the specifications of the abstract ones. As we have no contradicting
specifications for the same methods, the composition is well-formed. In Listing 9, the final
program MaxE is shown. All traits are composed.

1 class MaxE = MaxETrait1 + MaxETrait2 + MaxETrait3 + MaxETrait4

Listing 9: Trait composition

The already proven auxiliary methods in traits can be reused. For example, if we
want to implement a minElement method as shown in Listing 10, we could reuse already
implemented traits to reduce the programming and verification effort. The method minElement

is implemented in the following in trait MinE with one abstract method. The specification
of the method accessHead is the same as for the method accessHead above, so MaxETrait3 can
be reused. In this example, we show the flexible granularity of TraitCbC by directly
implementing the else branch, instead of introducing an auxiliary method as for maxElement.

5The methods could also be implemented in one trait.
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1 trait MinE {

2 @Pre: list.size() > 0

3 @Post: list.contains(result) &

4 (forall Num n: list.contains(n) ==> result <= n)

5 Num minElement(List list) =

6 if (list.size() == 1) {accessHead(list)}

7 elseif (accessHead(list) <= minElement(list.tail ()))

8 {accessHead(list)}

9 else {minElement(list.tail ())}

10

11 @Pre: list.size() > 0

12 @Post: result == list.element ()

13 abstract Num accessHead(List list);

14 }

Listing 10: Implementation of minElement with auxiliary method accessHead

The correctness of minElement is verified with the specifications of the method accessHead.
By composing MinE with MaxETrait3, we get a correct implementation of minElement. Note
how this verification process supports abstraction: as long as the contracts are compatible,
methods can be implemented in different styles by different developers to best meet non-
functional requirements while preserving the specified observable behavior [tBCSW18]. A
completely different implementation of maxElement can be used if it fulfills the specification
of the abstract method maxElement in trait MaxETrait1. This decoupling of specification and
corresponding satisfying implementations facilitates an incremental program construction
approach where a specified code base is extended with suitable implementations [DDJS14].

4.2. Object-Oriented Trait-Based Language. In this section, we formally introduce
the syntax, type system, reduction, and flattening semantics of a minimal core calculus for
TraitCbC. We keep this calculus for TraitCbC parametric in the specification logic so
that it can be used with a suitable program verifier and associated logic. The presented
rules to compose traits are conventional. The focus of our work is to enable a CbC approach
using traits that developers can easily adopt. Therefore, we present the calculus to prove
soundness of TraitCbC, but focus on the presentation of the advantages of incremental
trait-based programming in this paper. Indeed, languages with traits and with a suitable
specification language intrinsically enable incremental program construction.

4.2.1. Syntax. The concrete syntax of our core calculus for TraitCbC is shown in Fig. 1,
where non-terminals ending with ‘s’ are implicitly defined as a sequence of non-terminals,
i.e., vs ::= v1 . . . vn. We use the metavariables t for trait names, C for class names and
m for method names. A program consists of trait and class definitions. Each definition
has a name and a trait expression E . The trait expression can be a Body , a trait name, a
composition of two trait expressions E , or a trait expression E where a method is made
abstract, written as E[makeAbstractm]. A Body has a flag interface to define an interface,
a set of implemented interfaces Cs and a list of methods Ms. Methods have a method
header MH consisting of a specification S, the return type, a method name, and a list
of parameters. Methods have an optional method body. In the method body, we have
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Prog ::= Ds e
D ::= TD | CD
Name ::= t | C
TD ::= t = E
CD ::= C = E
E ::= Body | t | E + E | E[makeAbstract m]
Body ::= {interface? [Cs] Ms}
M ::= MH e?;
MH ::= S method C m(C1 x1 . . . Cn xn)
e ::= x | e.m(es) | new C(es)
Ev ::= [].m(es) | v.m(vs [] es) | new C(vs [] es)
v ::= new C(vs)
Γ ::= x1 : C1 . . . xn : Cn

S ::= . . . e.g. Pre : P Post : P
P ::= . . . e.g. First order logic

Figure 1: Syntax of the trait system

standard expressions, such as variable references, method calls, and object initializations.
For simplicity, we exclude updatable state. Field declarations are emulated by method
declarations, and field accesses are emulated by method calls.

The specification S in each method header is used to verify that methods are correctly
implemented. The specification is written in some logic. In our examples, we will use
first-order logic (cf. the example in Section 4.1). A well-formed program respects the
following conditions:

Every Name in Ds must be unique so that Ds can be seen as a map from names to
trait expressions. Trait expressions E can refer to trait names t. A well-formed Ds does not
have any circular trait definitions like t = t or t1 = t2 and t2 = t1. In a Body , all names of
implemented interfaces must be unique and all method names must be unique, so that Body
is a map from method names to method definitions. In a method header, parameters must
have unique names, and no explicit parameter can be called this.

4.2.2. Typing Rules. In our type system, we have a typing context Γ ::= x1 : C1 . . . xn : Cn

which assigns types Ci to variables xi. We define typing rules for our three kinds of
expressions: x, method calls, and object initialization. We combine typing and verification
in our type checking Γ ` e : C a P0 |= P1. This judgment can be read as: under typing
context Γ, the expression e has type C, where under the knowledge P0 we need to prove P1.
The knowledge P0 is our collected information that we use to prove a method correct. That
means, in our typing rules, we collect the knowledge about the parameters and expressions
in a method body to verify that this method body fulfills the specification defined in the
method header. The verification obligation P1 should follow from the knowledge P0.

We check if methods are well-typed with judgments of form Ds ; Name `M : OK . This
judgment can be read as: in the definition table, the method M defined under the definition
Name is correct. The typing rules of Fig. 2 are explained in the following. The first four
rules type different expressions and collect the information of these expressions to prove with
rule MOK that a method fulfills its specification. In the rule MOK with keyword verify,
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Γ ` x : Γ(x) a result : Γ(x) & result = x |= true
(x)

S method C m(C1 x1 . . . Cn xn) ; ∈ methods(C0 ) Γ ` e0 : C0 a P0 |= P ′
0 . . . Γ ` en : Cn a Pn |= P ′

n

x′
0 . . . x

′
n fresh S′ = S[this := x′

0, x1 := x′
1, . . . , xn := x′

n]
P = (result : C & P0[result := x′

0] & . . . & Pn[result := x′
n]& (Pre(S′) =⇒ Post(S′)))

Γ ` e0.m(e1 . . . en) : C a P |= P ′
0 & . . . & P ′

n & Pre(S′)
(Method)

Γ ` e1 : C1 a P1 |= P ′
1 . . . Γ ` en : Cn a Pn |= P ′

n

getters(C) = S1 method C1 x1(); . . . Sn method Cn xn(); x′
1 . . . x

′
n fresh S′

i = Si[this := result]
P ′′
i = (Pi[result := x′

i] & (Pre(S′
i) =⇒ result.xi() = x′

i)) P = (result : C & P ′′
1 & . . . & P ′′

n )

Γ ` new C(e1 . . . en) : C a P |= P ′
1 & . . . & P ′

n & Pre(S′
1) & . . .& Pre(S′

n)
(New)

Γ ` e : C′ a P |= P ′ C′ instanceof C

Γ ` e : C a P |= P ′ (sub)

Γ = this : Name, x1 : C1, . . . , xn : Cn Γ ` e : C a P |= P ′

verify Ds ` (Γ & Pre(S) & P ) |= (P ′ & Post(S))

Ds; Name ` S method C m(C1 x1 . . . Cn xn) e; : OK
(MOK)

Ds; Name ` S method C m(C1 x1 . . . Cn xn); : OK
(AbsMOK)

Body = {interface? [Cs] M1 . . .Mn}
Ds;Name ` M1 : OK . . .Ds;Name ` Mn : OK

Ds;Name ` Body : OK
(BodyTyped)

Figure 2: Expression typing rules of TraitCbC

we call a verifier to prove each method once. Abstract methods (AbsOK) are always correct.
Rule BodyTyped ensures that all methods in a body are correctly typed.

x : As usual, the type of a variable is stored in the environment Γ. From the verification
perspective, we do not need to prove anything to be allowed to use a variable;
thus we use true. We know that the result of evaluating a variable is the value
of such variable, and that such value is of the type of the variable; thus we have
result : Γ (x ) & result = x . The result is the returned value of evaluating this
expression, and variable : type is a predicate in our system. As you can notice, we are
assuming that our parametric logic supports at least a logical and (&); but of course
other ways to merge knowledge could work too.

Method: As usual, to type a method call, we inductively type the receiver and all the
parameters. In this way, we obtain all the types C0 . . . Cn, all the knowledge P0 . . . Pn,
and all the verification obligations P ′

0 . . . P
′
n. Inside of all conditions Pi |= P ′

i we call
the result of ei result. We cannot simply merge the knowledge of P0 . . . Pn, since
their result refers to different concepts. Thus, we chose fresh x′0 . . . x

′
n variables, and

we rename result of Pi and P ′
i into x′i. Similarly, S′ is the specification of the method

adapted using x′0 . . . x
′
n.

The verification obligation of course contains all the obligations of the receiver and
the parameters, but also requires the precondition of the method to hold.

The knowledge contains the knowledge of the receiver and the parameters, and the
method specification in implication form. Naively, one could expect that since the
precondition is already in the obligation we could simply add the postcondition to the
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knowledge. This would be unsound. By using the specification in implication form,
the system prevents circular reasoning: we could otherwise use the postcondition to
prove the precondition. Instead, when the system shows that the precondition of S′

holds, it can assume the postcondition of S′. Similar to logical and above, we are
assuming that our parametric logic supports at least logical implication, but of course
other forms of logical consequence could work too.

Note that the postcondition will contain information about the result of the method
body as information on the result variable.

New: As usual, to type an object instantiation, we inductively type all the parameters.
In this way we obtain all the types C1 . . . Cn, all the knowledge P1 . . . Pn, and all the
verification obligations P ′

1 . . . P
′
n. As we did for Method we use fresh variables to be

able to compose predicates.
As we mentioned above, we rely on abstract state operations to represent state:

that is, all the abstract methods in C need to be of form Si method Ci xi(); where
this.xi() returns the value of field xi, that in turn was initialized with the result of
expression ei. The function getters(C) returns all methods of this form.

Knowledge P ′′
i contains the knowledge of Pi (from expression ei) and it links such

knowledge to the result of calling method result.xi(), so that calling a getter on the
created object will return the expected value. However, the information is conditional
over verifying the precondition of such getter. Note that we do not need to add the
knowledge of the postcondition of xi() here; this will be handled by the Method rule
when xi() is called.

Knowledge P is simply merging the accumulated knowledge; while the final obli-
gation in addition to merging the accumulated obligations also requires that the
precondition of all the getters hold. In this way the getter preconditions behave like
the precondition of the constructor. By requiring those preconditions, we ensure that
we can call the getters on all the created objects.

Sub: The subsumption rule is standard. We allow subtyping between class names. Note
that we do not apply weakening and strengthening of conditions here.

Besides of typing correct programs, the typing rules of Trait-CbC have the goal to verify
the correctness of method implementations. The following rules check whether a method or
a Body are correct. The check for a correct method declaration in MOK calls a program
verifier to verify the correctness. We need just one verifier call for the verification of each
method because the rules above collected all needed knowledge and obligations.

MOK: In MOK, we construct a Γ, and we type the method body, obtaining knowledge
P and obligation P ′. The program verifier will know the type information of Γ, the
premise of the method, and the knowledge P , and will prove the obligation P ′ and the
postcondition of the method. This verification in the typing rule is indicated by the
keyword verify. Here, we use implication, but a different program verifier may use a
different form of logical consequence. The program verifier can access the specification
of all the other methods since we also provide the declaration table.

AbsMOK: Abstract methods are correctly typed.
BodyTyped: A Body is correctly typed, if all the methods in the declaration of the Body

are correctly typed.
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Ds ` e → e′

Ds ` Ev [e] → Ev [e′]
(Ctx)

S method C m(C1 x1, . . . , Cn xn) e; ∈ methods(C )

Ds ` new C(vs).m(v1 . . . vn) → e[this = new C(vs), x1 = v1, . . . , xn = vn]
(mcall)

abs(Ds(C)) = S1 method C1 x1(); . . . Sn method Cn xn();

Ds ` new C(v1 . . . vn).xi() → vi
(getter)

Figure 3: Reduction rules of TraitCbC

4.2.3. Reduction Rules. We formulate three reduction rules for our system to evaluate input
expressions to final values. We introduce an evaluation context Ev in our syntax in Fig. 1 to
define the order of evaluation. The rules of Fig. 3 are explained in the following.

Ctx: This is the conventional contextual rule, allowing the execution of subexpressions.
Mcall: We reduce a method call to an expression e, where the receiver is replaced with

new C(vs), and each parameter xi with the actual value vi. We also ensure that the
method is declared in the class C.

Getter: In our formalism, abstract methods without arguments represents getters. Notation
abs(Body) returns the set of all abstract methods in Body . A valid class can only have
abstract methods without arguments, and they will all represent getters.

4.2.4. Flattening Semantics. When we implement methods in several traits, we have to
check that these traits are compatible when they are composed. This process to derive a
complete class from a set of traits is called flattening. We follow the traditional flattening
semantics [DNS+06]. A class that is defined by composing several traits is obtained by
flattening rules. All methods are direct members of the class [DNS+06]. Overall, our
flattening process works as a big step reduction arrow, where we reduce a trait expression
into a well-typed and verified body.

To introduce our flattening rules in Fig 4, we first define the helper functions. The
function allMeth collects all method headers with the same name as m in all input bodies
(Definition 1). When two Bodys are composed (Definition 2), the implemented interfaces
are united and the methods are composed. The composition of methods (Definition 3)
collects methods that are only defined in one of the input sets. If a method is in both sets,
it is composed (Definition 4). Here, we distinguish four cases. If one method is abstract
and the other is concrete, we have to show that the precondition of the abstract method
implies the precondition of the concrete method. Additionally, the postcondition of the
concrete one has to imply the postcondition of the abstract one. This is similar to Liskov’s
substitution principle [LW94]. The second case is the symmetric variant of the first case. In
the third and fourth case, two abstract methods are composed. Here, the specification of
one abstract method has to imply the specification of the other abstract method such that
an implementation can still satisfy all specifications of abstract methods. If both methods
are concrete, the composition is correctly left undefined. This composition error can be
resolved by making one method m abstract in the Body , as defined in Definition 5. The
resulting Body is similar with the difference that the implementation of the method m is
omitted. The flattening rules in Fig. 4 are explained in the following in detail. In these
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rules, a set of traits is flattened to a declaration containing all methods. If abstract and
concrete methods with the same name are composed, Definitions 2-4 are used to guarantee
correctness of the composition.

Definition 1 (All Methods). allMeth(m, Bodys) =
{MH ; | Body ∈ Bodys, Body(m) = MH ; }

Definition 2 (Body Composition). Body1 + Body2 = Body
{interface? [Cs1] Ms1}+ {interface? [Cs1] Ms1} =
{interface? [Cs1 ∪ Cs2] Ms1 + Ms2}

Definition 3 (Methods Composition). Ms1 + Ms2 = Ms
• (M Ms1) + Ms2 = M (Ms1 + Ms2)

if methName(M ) /∈ dom(Ms2 )
• (M1 Ms1) + (M2 Ms2) = M1 +M2 (Ms1 + Ms2)

if methName(M1 ) = methName(M2 )
• ∅+ Ms = Ms

Definition 4 (Method Composition). M1 +M2 = M
• S method C m(C1 x1 . . . Cn xn) e; + S′ method C m(C1 . . . Cn );

= S method C m(C1 x1 . . . Cn xn) e;
if Pre(S′) implies Pre(S) and Post(S) implies Post(S′)
•MH 1; + MH 2 e; = MH 2 e; + MH 1;
• S method C m(C1 x1 . . . Cn xn); + S′ method C m(C1 . . . Cn );

= S method C m(C1 x1 . . . Cn xn);
if Pre(S′) implies Pre(S) and Post(S ) implies Post(S ′)
• S method C m(C1 x1 . . . Cn xn); + S′ method C m(C1 . . . Cn );

= S′ method C m(C1 x1 . . . Cn xn);
if (Pre(S ) implies Pre(S ′) and Post(S ′) implies Post(S ))
and not (Pre(S ′) implies Pre(S ) and Post(S ) impliesPost(S ′))

Definition 5 (Body Abstraction). Body [makeAbstract m]
{[Cs] Ms1 S method C m(Cxs) ; Ms2}[makeAbstract m]
= {[Cs] Ms1 S method C m(Cxs); Ms2}

FlatTop: The first rule flattens a set of declarations D1 . . . Dn to a set D′
1 . . . D

′
n. We express

this rule in a non-computational way: we assume to know the resulting D′
1 . . . D

′
n, and

we use them as a guide to compute them. Note that if there is a resulting D′
1 . . . D

′
n

then it is unique; flattening is a deterministic process and D′
1 . . . D

′
n are used only to

type check the results. They are not used to compute the shape of the flattened code.
Non computational rules like this are common with nominal type systems [IPW01]

where the type signatures of all classes and methods can be extracted before the
method bodies are verified.

DFlat: This rule flattens an individual definition by flattening the trait expression. When
the flattening produces a class definition, we also check that the body denotes an
instantiable class; a class whose only abstract methods are valid getters. The function
abs(Body) returns the abstract methods.

BFlat: It may look surprising that the Body does not flatten to itself. This represents what
happens in most programming languages, where implementing an interface implicitly
imports the abstract signature for all the methods of that interface. In the context of
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D′
1 . . . D

′
n ` D1 ⇓ D′

1 . . . D′
1 . . . D

′
n ` Dn ⇓ D′

n

D1 . . . Dn ⇓ D′
1 . . . D

′
n

(FlatTop)

Ds; Name ` E ⇓ Body if Name of form C then abs(Body) = S T x1(); . . . S T xn();

Ds ` Name = E ⇓ Name = Body
(DFlat)

Body = {interface? [Cs] M1 . . .Mn}
Body ′ = {interface? [Cs] M1 . . .Mn Ms}

Ms = {ΣallMeth(Ds, Cs, m) | m ∈ dom(Cs) and m /∈ dom(Body)} Ds; Name ` Body ′ : OK

Ds; Name ` Body ⇓ Body ′ (BFlat)

Ds; Name ` t ⇓ Ds(t)
(tFlat)

Ds; Name ` E1 ⇓ Body1 Ds; Name ` E2 ⇓ Body2

Ds; Name ` E1 + E2 ⇓ Body1 + Body2

(+Flat)

Ds; Name ` E ⇓ Body Body = {[Cs] M1 S method C m(C1 x1 . . . Cn xn) ; M2}
Body ′ = {[Cs] M1 S method C m(C1 x1 . . . Cn xn); M2}

Ds; Name ` E[makeAbstract m] ⇓ Body ′ (AbsFlat)

Figure 4: Flattening rules of TraitCbC

verification also the specification of such interface methods is imported. In concrete,
Body ′ is like Body , but we add Ms by collecting all the methods of the interfaces that
are not already present in the Body .

Moreover, we check that all the methods defined in the class respect the typing
and the specification defined in the interfaces: if a class has S method Foo foo(); or
S method Foo foo() e; and there is a S′ method Foo foo(); in the interface, then S must
respect the specification S′. The system then checks that the Body is well-typed and
verified by calling Ds; Name `Mi : OK

TFlat: A trait t is flattened to its declaration Ds(t).
+Flat: The composition of two expression E1 and E2, where both expressions are first

reduced to Body1 and Body2, results in the composition of these bodies as defined in
Definition 2.

AbsFlat: An expression E where one method m is made abstract flattens to a Body ′. We
know that E flattens to Body . The only difference between Body and Body ′ is that the
one method m is abstract in Body ′. In Body , the method can be abstract or concrete.

4.2.5. Soundness of TraitCbC. In this subsection, we formulate the main result of the
TraitCbC approach. We prove soundness of the flattening process with a parametric logic.
We claim that if you have a language without code reuse and with sound and modular
post-hoc verification then the language supports CbC simply by adding traits to the language.
That is, traits intrinsically enable a CbC program construction approach.

To prove soundness of the construction approach of TraitCbC (Theorem 2: Sound
CbC Process) as exemplified in Section 4.1, we have to show that the flattening process is
correct (Theorem 1: General Soundness). In turn, to prove General Soundness, we need two
lemmas which state that the composition of traits is correct (Lemma 1) and that a trait
after the makeAbstract operation is still correct (Lemma 2).

In Lemma 1, we have well-typed definitions Ds, and two well-typed and verified traits
in Ds, and the resulting trait/class is also well-typed and verified.
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Lemma 1 (Composition correct).
If Ds(t1) = Body1, Ds(t2) = Body2, Ds(Name) = Body, Ds; t1 ` Body1 : OK , Ds; t2 `
Body2 : OK , and Body1 + Body2 = Body,
then Ds; Name ` Body : OK

Proof. We prove by contradiction. We assume the resulting Body is ill typed. By definition
of BodyTyped, it means that one of the methods cannot be typed with either AbsMOK
or MOK. The list of methods that need to be typed is obtained by Definition 2.

Abstract methods can only be typed with AbsMOK and are never wrong. Implemented
methods can only be typed with MOK. If Γ ` e : C a P |= P ′ or the other precondition
verify Ds ` (Γ & Pre(S) & P ) |= (P ′ & Post(S)) does not hold, it means that there was a
method mi with expression ei in Body1 (or symmetrically for Body2) that was well-typed
under Ds ; t1 ` Body1. That means that all of its implemented methods were well-typed and
verified. Typing ei produces Pi |= P ′

i by using a Γt1 containing this : t1.
If Ds; Name ` Body : OK is not applicable, the same expression ei was typed us-

ing a ΓName containing this : Name. It produced P ′′
i |= P ′′′

i so that verify Ds `
(ΓName & Pre(S) & P ′′

i ) =⇒ (P ′′′
i & Post(S)) does not hold. We know that verify Ds `

(Γt1 & Pre(S) & Pi) =⇒ (P ′
i & Post(S)) holds by our assumption. By Definition 4, the

contracts of the methods in Body are simply stronger than the contracts of the methods in
Body1. The only difference between P ′′

i |= P ′′′
i and Pi |= P ′

i is in the contracts of methods
called on this. Assuming that our parametric logic implication is transitive, we know that
verify Ds ` (Γt1 & Pre(S) & Pi) =⇒ (P ′

i & Post(S)) entails verify Ds ` (ΓName & Pre(S)
& P ′′

i ) =⇒ (P ′′′
i & Post(S)), thus we reach a contradiction.

Lemma 2 shows that if we have a well-typed and verified trait, the operation make−
Abstract results in a trait/class that is also well-typed and verified.

Lemma 2 (MakeAbstract correct).
If Ds(t) = Body, Ds(Name) = Body ′, Ds; t ` Body : OK ,

and Body [makeAbstract m] = Body ′,
then Ds; Name ` Body ′ : OK

Proof. We prove by contradiction. We assume the resulting Body ′ is ill typed. By definition
of BodyTyped, it means that one of the methods cannot be typed with either AbsMOK
or MOK. The list of methods that need to be typed is obtained by Definition 2.

Abstract methods can only be typed with AbsMOK and are never wrong. We know
that Body is typable by our assumption. The only difference between Body and Body ′ is
that the method m is made abstract. As we have seen for Lemma 1, we are typing Body ′ in
a different Γ. This case is even simpler than Lemma 1 because Body and Body ′ have exactly
the same specifications. The abstract method m and thus Body ′ cannot be ill typed.

With these Lemmas, we can prove Theorem 1. Given a sound and modular verification
language, then all programs that flatten are well-typed and verified. In a modular verification
language, a method can be fully verified using only the information contained in the method
declaration and the specification of any used method. Moreover, our parametric logic must
support at least a commutative and associative and (but of course other ways to merge
knowledge could work too) and a transitive implication (but of course other forms of logical
consequence could work too).
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Theorem 1 (General Soundness).
For all programs Ds where Ds flattens to Ds ′, and Ds ′ is well-typed;
that is, fo rall Name = Body ∈ Ds ′, we have Ds ′; Name ` Body : OK .

Proof. By induction on the size of Ds , and by induction on cases of E (the applied flattening
rule for E).

• Body only flattens if the Body can be shown to be well-typed.
• t only reads a trait from the already verified Ds ′.
• Body1 + Body2 is correct with Lemma 1. The lemma can be applied directly, if E is of

depth one (e.g., Body1 + Body2). If E is more complex, we have to apply other cases of
this case analysis.
• makeAbstract is handled similarly using Lemma 2.
• By the flattening relation, we know that Body1 and Body2 are well-typed in Ds. If we

start from a program containing only well-typed and verified traits, any new class we can
define by just composing those traits is well typed and verified.

We now show that the TraitCbC approach is sound. Theorem 2 states that starting
with one abstract method and a set of verified traits, the composed program is also verified.

Theorem 2 (Sound CbC Process).
Starting from a fully abstract specification t0, and some construction steps t1 . . . tn, we can
write C = t0 + · · ·+ tn as our whole CbC approach, where t0 + t1 is the application of the
first construction step. If we use CbC to construct programs, we can start from verified
atomic units and get a verified result. Formally, if t0 = {MH } t1 = {Ms1} . . . tn = {Msn}
are well-typed, and
t0 = {MH } t0 = {MH }
t1 = {Ms1} . . . tn = {Msn} ⇓ t1 = {Ms1} . . . tn = {Msn}
C = t0 + · · ·+ tn C = Body

then C = Body is well-typed.

Proof. This is a special case of Theorem 1.

Theorem 2 shows clearly that trait composition intrinsically enables a CbC approach:
An object-oriented programming language with traits and a corresponding specification
language supports an incremental CbC approach.

4.3. Proof-of-Concept Implementation. In this section, we describe the implementation,
which instantiates TraitCbC in Java with JML [LBR98] as specification language and
KeY [ABB+16] as verifier for Java code. Our trait implementation is based on interfaces
with default implementation. Our open source tool is implemented in Java and integrated as
plug-in in the Eclipse IDE.6 Besides this prototype, other languages with a suitable verifier,
such as Dafny [Lei10] and OpenJML [Cok11], can also be used to implement TraitCbC.

In Listing 11, we show the concrete syntax of our implementation. Each method in a trait
is specified with JML with the keywords requires and ensures for the pre- and postcondition.
To verify the correctness of programs, we need two steps. First, we verify the correctness
of a method implemented in a trait w.r.t. its specification. Second, for trait composition,
our implementation checks the correct composition for all methods (cf. Definition 2). The
syntax of trait composition is shown in Listing 12. In a tc-file (a file to specify the traits

6Tool and evaluation at https://doi.org/10.5281/zenodo.7766635

https://doi.org/10.5281/zenodo.7766635
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to be composed), the name of the resulting trait is given and the composed traits are
connected with a plus operator. In Listing 12, trait MaxElement1 is composed with trait
MaxElement2. The trait MaxElement2 must implement the methods accessHead and maxTail, so
that we obtain a correct result in which all methods are implemented. To verify correctness
of the trait composition, it is checked that the specification of a concrete method satisfies
the specification of the abstract one with the same signature (cf. Definition 4). These
verification goals are sent to KeY, which starts an automatic verification attempt.

1 public interface MaxElement1 {

2 /*@ requires list.size() > 0;

3 @ ensures (\forall int n; list.contains(n);

4 @ \result >= n) & list.contains(\result );

5 @*/

6 default public int maxElement(List list) {

7 if (list.size() == 1) return accessHead(list);

8 if (list.element () >= maxElement(list.tail ()))

9 { return accessHead(list); }

10 else { return maxTail(list); } }

11

12 /*@ requires list.size() > 0;

13 @ ensures \result == list.element ();

14 @*/

15 public int accessHead(List list);

16

17 /*@ requires list.size() > 1;

18 @ ensures (\forall int n; list.tail (). contains(n);

19 @ \result >= n) & list.tail (). contains(\result );

20 @*/

21 public int maxTail(List list);

22 }

Listing 11: Example of a trait in our implementation

1 ComposedMax = MaxElement1 + MaxElement2

Listing 12: Example of a trait composition

Evaluation. We evaluate our implementation by a feasibility study. First, we reim-
plemented an already verified case study in our trait-based language. We used the
IntList [STAL11] case study, which is a small software product line (SPL) with a com-
mon code base and several features extending this code base. Here, we can show that our
trait-based language also facilitates reuse. The IntList case study implements functionality
to insert integers to a list in the base version. Extensions are the sorting of the list and
different insert options (e.g., front /back). We implement five methods that exists in different
variants with our trait-based CbC approach. We implement the case study in different
granularities. The coarse-grained version is similar to the SPL implementation we started
with [STAL11], confirming that traits are also amenable to implement SPLs as shown by



26 FLEXIBLE CORRECT-BY-CONSTRUCTION PROGRAMMING

Classic CbC CbC-Block TraitCbC

Language Additional refinement rules
for a programming language.

Needs specification language.

Additional refinement rules
for a programming language.

Introduces a specified block of

statements. Needs specifica-
tion language.

Programming language with
traits. Needs specification

language.

Tool

support

Pen and paper. Some special-

ized tools available.

Pen and paper. Some special-

ized tools available. Block in-

stantiation rule relies on post-
hoc verification tools.

Relies on post-hoc verification

tools.

Construc-

tion Rules

Specific refinement rules. Specific refinement rules. Construction by composition

of traits.

Correctness/

Debugging

Guarantees the correctness of

each refinement step.

Guarantees the correctness of

each refinement step. Refine-
ments can be condensed with

the block rules.

Guarantees the correctness of

each construction step. Each
method is specified so that

each constructed method can

directly be verified.

Proof
complexity

Many, but small proofs. Any granularity of proofs. Any granularity of proofs.

Reuse Refinement steps cannot be
reused; only fully imple-

mented methods can.

Refinement steps cannot be
reused; only fully imple-

mented methods can.

Each verified method in a
trait can be reused.

Applications Focuses on small, but

correctness-critical algo-
rithms.

Focuses on correctness-

critical algorithms.

As TraitCbC is based on

post-hoc verification, it can
be used in similar areas where

post-hoc verification is used.

Traits are beneficial for incre-
mental development and soft-

ware product lines.

Table 1: Comparison of TraitCbC with CbC-Block and classic CbC

Bettini et al. [BDS10]. The fine-grained version implements the five methods incrementally
with 12 construction steps. We can reuse 6 of these steps during the construction of method
variants.

We also implement three more case studies (BankAccount [TSAH12], Email [Hal05], and
Elevator [PR01]) with TraitCbC and classic CbC to show that it is feasible to implement
object-oriented programs with both approaches. We used CorC [RSC+19] as an instance of
a classic CbC tool. We were able to implement 9 classes and verify 34 methods with a size
of 1–20 lines of code. For future work, a user study is necessary to evaluate the usability of
TraitCbC in comparison to classic CbC to empirically confirm our stated advantages.

5. The Different CbC-based Program Construction Approaches in
Comparison

In this section, we discuss classic CbC in comparison to CbC-Block and TraitCbC.
In Table 1, we summarize how the three approaches compare regarding main aspects of
developing correct programs using tool support. The aspects comprise the programming
language, the tool support, the procedure to develop programs, and the verification of the
program.
Language. All approaches need an underlying programming and specification language.
The defined refinement rules of the classic CbC approach are external to a programming
language. That means, each refinement rule introduces some statement of the programming
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language by transforming the program. With CbC-Block and the block-instantiation rule
more than one statement of the language can be introduced at once. TraitCbC is usable
with languages that have traits. Methods can be implemented as defined by the language.
No refinement rules are necessary.
Tool Support. Tool support is helpful for any of the approaches. For classic CbC,
mostly pen and paper is used. There are a few specialized tools such as CorC [RSC+19],
ArcAngel [OCW03], and SOCOS [Bac09, BEM07]. These tools force a certain programming
procedure on the user because refinement rules must be applied to implement programs.
CbC-Block is implemented in CorC and extends the set of refinement rules with the
new rules for blocks. To verify the correctness of block instantiations, program verifiers
can be reused. There are program verifiers for many languages, such as Java [ABB+16],
C [CDH+09], and C# [BFL+11, BLS04]. Other languages are integrated with their verifier
from the start, e.g., Spec# [BLS04] and Dafny [Lei10]. For TraitCbC, we also need a
program verifier to prove the correctness of method implementations, but we do not need
specialized tools to construct methods, such as CorC.
Construction Rules. To construct a program, classic CbC has a strict concept of refinement
rules that must be applied to construct a program. CbC-Block relaxes this strict guideline
to construct programs. Programs can be constructed stepwise as with classic CbC, but
if desired, any number of refinement steps can be condensed with the block rules. In
the extreme case, a whole program can be developed in one step. TraitCbC offers this
flexibility to construct programs without the need of external refinement rules. Methods
can be developed freely and only need to be composed with respect to their specification.
Nevertheless, TraitCbC supports to construct code in fine-grained steps, which are more
amenable for verification than more complex methods.
Correctness/Debugging. Classical CbC gives explicit information about the program
states before and after execution of each statement by the Hoare triple notation. The
correctness of each applied refinement step is guaranteed by proving the side conditions
of the refinement rule. Some side conditions are not directly provable because abstract
statements in Hoare triples must be concretized first. In the worst case, a problem in the
program is found only after some refinement steps. The abstract statements in classic CbC
are not explicitly specified by the developer. Additional specifications in classic CbC are
introduced with some rules such as an intermediate condition in the composition rule. Then,
these specifications are propagated through the program to be constructed. Again, due to a
possible delayed check of a side condition, a wrong specification is found only after some
refinement steps.

If errors occur in the program development process, TraitCbC gives early and detailed
information on the level of verified methods. By specifying the method under development
and any abstract method that is called by this method, we can directly verify the correctness
of the method under development. We assume that the introduced abstract methods will be
correctly implemented in further refinement steps. With each step, the developer gets closer
to the solution until finally all abstract methods are implemented. CbC-Block combines
the characteristics of the other two approaches. The refinement rules of classic CbC can be
applied, or blocks of statements can be introduced. The specified block is verified similar to
a method in TraitCbC.
Proof Complexity. Classical CbC requires many small proofs to guarantee the correctness
of a program. CbC-Block can condense the proofs into larger proofs using the block
refinement rules. TraitCbC can have the same granularity and also the same proof effort as
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classic CbC, since each method implementation can correspond to just one refinement step.
The advantage of TraitCbC and CbC-Block is that developers can freely implement a
method body or a block. They must not stick to the same granularity as in the classic CbC
refinement rules. Proof complexity can be balanced against verifier calls.
Reuse. A fully refined method can be reused in all approaches. For TraitCbC, we can
easily reuse even very small units of code, since they are represented as methods in the
traits. In classic CbC and CbC-Block, no refinement step can be reused.
Applications. The classic CbC approach does not scale well to development proce-
dures for complete software system. Rather, individual algorithms can be developed with
CbC [WKSC16]. With the block rules, the scalability is improved because refinement steps
that are easy to prove can be combined into one block. This saves the application of
refinement rules and their corresponding correctness proofs. With ArchiCorC [KRS20],
we can even scale CbC to the development of correct component-based architectures. By
composing components specified with required and provided interfaces, we support the
creation of software architectures correct by construction.

As soon as we scale TraitCbC to real languages, we have the same application scenarios
as approaches that already use post-hoc program verification. As argued by Damiani et
al. [DDJS14], traits enable an incremental process of specifying and verifying software.
Bettini et al. [BDS10] proposed to use traits for software product line development and
highlighted the benefits of fine-grained reuse mechanisms. Here, TraitCbC’s guideline is
suitable for constructing new product lines step by step from the beginning.

Since CbC-Block extends classic CbC and can be freely applied at any granularity
of refinement steps, we propose to use CbC-Block for any implementation of correctness-
critical software, but the CbC approach must be well understood by the developer to be
efficiently usable. In TraitCbC, methods are developed and composed directly, so less
knowledge is needed to apply the approach, but developers can fall back into a post-hoc
verification process and thus lose the benefits of CbC (e.g., if the developers first develop
all methods and do not directly prove the correctness). In general, both approaches are
usable for program development and the right choice depends on the preferences and prior
knowledge of the developers.
Summary. In summary, TraitCbC and CbC-Block allow more flexible program con-
struction without losing the advantages of incremental correct-by-construction program
development. CbC-Block loosens the strict guideline of classic CbC by adding the block
refinement rules. CbC-Block still needs specialized tools, such as CorC to be applicable.
TraitCbC enables a CbC approach for trait-based languages without introducing refinement
rules. This program construction approach combined with the flexibility of traits allows
correct methods to be developed in small and reusable steps. TraitCbC is independent of
special CbC tools and requires only a program verifier.

6. Related Work

In the following, we discuss related work for specifying and verifying software. We discuss
related correctness-by-construction approaches and compare CorC with other tools for
CbC.
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Contracts and Program Verification. The implementation of CbC in CorC and the
implementation of TraitCbC use JML, Java DL and Java to specify and write programs.
For the verification, KeY [ABB+16] is integrated in the backend. KeY is a deductive program
verifier for Java programs specified with JML. In an intermediate step, the specified programs
are translated to Java DL. Similarly, OpenJML [Cok11] verifies Java programs specified with
JML. Besides Java/JML, many languages support pre-/postcondition contracts or other forms
of specification to state program behavior. First, the programming language Eiffel introduced
contracts and supported the design-by-contract approach [Mey88, Mey92]. Eiffel is an object-
oriented programming language, where classes are specified with invariants, and methods
with pre-/postconditions contracts. For the verification, AutoProof [KRMJ16, TFNP15] is
integrated that translates the specified program to a logic formula. Then, an SMT-solver
proves the validity of the formulas. For C#, the language Spec# is an extension to introduce
contracts and invariants [BLS04, BFL+11]. The verification is done by translating the proof
obligations to an intermediate language BoogiePL that can be verified with Boogie [BCD+05].
For the C language, the VCC [CDH+09] and Frama-C [CKK+12] tools verify annotated
C code. VCC reuses the Spec# tool chain. For Java and C, the VeriFast [JSP10] tool
verifies C and Java programs. VerCors [ABD+14] also support the verification of C and
Java programs with a focus on concurrent and distributed software. Another language with
integrated specifications and verification is Dafny [Lei10]. Dafny is a functional language, but
supports the compilation to other languages such as C#, Java, Go, and Python. Similarly,
Whiley [PG13] is a designed language with associated verifier to simplify the verification of
programs. The languages SPARK [Bar03] supports a subset of the Ada language to specify
and verify Ada programs. In contrast to JML, the specification is not written as comments,
but the Ada aspect-syntax is used to express contracts. The focus of all these languages
and verification tools is the specification of program behavior and the verification that a
program satisfies its specification. With CbC (CbC-Block and TraitCbC), we put the
correct construction of programs in the foreground, instead of just verifying the correctness
post-hoc. However, Watson et al. [WKSC16] argue that correctness-by-construction and
post-hoc verification can be used together to combine their mutual strengths.

To verify trait languages, Damiani et al. [DDJS14] added specifications of methods
in traits to verify correct trait composition. They proposed a modular and incremental
verification process. Traits are introduced in many languages to support clean design
and reuse, for example Smalltalk [DNS+06], Java [BMN14] by utilizing default methods
in interfaces, and other Java-like languages [BDSS13, LS08, SD05]. None of these trait
languages were used to formulate a CbC approach to create correct programs. They only
focus on code reuse or post-hoc verification.

Refinement-Based Correctness-by-Construction. The main idea of correctness-by-
construction is the stepwise construction of a program from a starting specification with
correctness guarantees for each step. We focused on correctness-by-construction by Kourie
and Watson [KW12] that we called classic CbC. This classic CbC approach is based on
Dijkstra [Dij76] and Gries [Gri87]. In this paragraph, we discuss related refinement-based
CbC approaches. All of these approaches create correct programs by refining an abstract
program or system to a concrete implementation. This is the main difference to the
composition-based CbC approach of TraitCbC, where atomic units of code are composed
to whole programs.
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Morgan’s refinement calculus [Mor94] is similar to correctness-by-construction by Kourie
and Watson [KW12]. Both approaches have the same theoretical foundation, but Morgan’s
refinement calculus is more elaborated with a large number of different refinement rules,
where many rules are only formally interesting. Kourie and Watson [KW12] reduced the
refinement rules to a minimal but sufficient set, such that CbC becomes comprehensible for
developers without a major background in formal methods. The language ArcAngel [OCW03]
with the verifier ProofPower [ZOC09] implements Morgan’s refinement calculus. The tool
uses a tactic language to apply a sequence of refinement rules for program refinement. Thus,
a tactic has the same benefit as the application of a block refinement in CbC-Block because
the application of refinement rules is condensed to one refinement step. The difference is
that for an introduced block of code in CbC-Block, it does not matter what classic CbC
refinement rules would have to be applied to introduce that block of code. A tactic still
applies the refinement rules stated in that tactic sequentially.

The invariant based programming [BW12, Bac09] shifts the focus from pre-/postcondition
contracts as starting point for refinements to invariants. The tool SOCOS [Bac09, BEM07]
implements Back’s methodology. Similar to CorC, SOCOS has a graphical user interface
to create a program in the form of a UML-style state chart. Refinement steps introduce
new states and transitions in the state chart and check compliance with the invariants.
A completely refined program is proved correct and executable code can be generated.
In CorC, the graphical user interface present the refinement steps in a hierarchical tree
structure that more directly represent the structure of the code (comparable with an abstract
syntax tree). Therefore, CorC and also the implementation of TraitCbC are on the level
of source code.

Further refinement-based methodologies are Event-B [Abr10, ABH+10] for automata-
based systems and Circus [OCW09, OGC08] for state-rich reactive systems. Both method-
ologies work on an abstraction level with abstract models instead of specified source code.
In refinement steps these abstract models of the system are transformed to concrete and
executable implementation. Here, each refined result guarantees conformations with the
initial model. Event-B is supported by the tool Rodin [ABH+10], and Circus is supported
by the tool CRefine [OGC08]. The main difference to CbC by Kourie and Watson [KW12],
and TraitCbC is the abstraction level. We specify and verify source code rather than
automata-based systems.

Data refinement [HKKN13, HL22, LT12, CDM13] is a related approach that focuses
on the refinement of (abstract) programs with abstract types to correct and more efficient
programs with concrete types. Haftmann et al. [HKKN13] examine how the Isabelle/HOL
code generator applies data refinements to produce executable versions of abstract programs.
Cohen et al. [CDM13] present an approach to refine Coq programs to enhance computational
efficiency. Haslbeck and Lammich [HL22] not only ensure functional correctness during data
refinement, they also verify worst-case complexity of algorithms at the LLVM level. The
main difference to CbC by Kourie and Watson [KW12] is that data refinement approaches
start with algorithms on abstract data structures that are refined to more concrete data
structures, whether CbC by Kourie and Watson focuses on the incremental development
of the algorithm itself. Therefore, both approaches can used in concert to develop more
efficient algorithm.

Extensions to Correctness-by-Construction and CorC. CorC has been extended in
several directions to allow the structured program development for larger software systems
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and further application areas. With ArchiCorC [KRS20], we integrate the construction of
correct software architectures. We bundle CorC programs into reusable software components.
The components communicate via required and provided interfaces where ArchiCorC
guarantees the compatibility between them. With VarCorC [BRS20] software product lines
are developed correct by construction. A software product lines is used to systematically
construct a family of similar software programs instead of developing monolithic programs.
VarCorC ensures the correctness of all possible software variants of the product line. In
addition to functional correctness, correctness-by-construction and CorC are extended to
guarantee nonfunctional properties. As a first example, we introduced CbC refinement
rules to ensure that programs [RKTS20, RKS+22] follow an information flow policy which
defines the allowed flow of information in a program. In every refinement step, security
and functional correctness of the program is guaranteed, such that insecure and incorrect
programs are prohibited by construction. The goal of these extensions is that program
development in CorC is scalable and that CbC can be used for additional application areas.
Orthogonally, this article focuses on improving the flexibility of developing programs correct
by construction (e.g., by introducing the block refinement rules).

Program and Specification Synthesis. Program synthesis is a technique that generates
programs from user given specifications automatically. Pioneers in this field are Manna et
al. [MW80]. Gulwani et al. [GPS+17] give an overview of state-of-the-art program synthesis
approaches. For example, for Fortran, Stickel et al. [SWL+94] deductively extract programs
from user-given graphical specifications. They compose procedures from libraries to full
implementations. Similarly, Gulwani et al. [GJTV10] synthesize programs by composing
base components from a specified library. Polikarpova et al. [PKSL16] synthesize recur-
sive programs from specifications by utilizing type information. Similarly, synthesis of
function summaries [Hoa71, CDK+15, SFS12] automatically generate pre-/postcondition
specifications from programs to achieve modular verification and to improve verification
time. With CbC (classic CbC, CbC-Block, or TraitCbC), developers have the task to
specify and create programs according to that specification. Therefore, CbC is a program
development approach where the developer determines the resulting program, while program
synthesis generates one of possibly many programs that fulfills the specification. Contrary
to this, the synthesis of a function summary generates one of possibly many specifications
for a program. Synthesis has scalability limitations due to an enormous search space of
programs/specifications and ambiguity of user intent.

7. Conclusion

In this article, we presented CbC-Block and TraitCbC two incremental program construc-
tion approaches that guide developers to implementations that are correct by construction.
CbC-Block extends classic CbC with block refinement rules. These rules allow to condense
the application of CbC refinement rules into one block refinement. Thus, CbC-Block
increase flexibility in the development of programs because any sequence of statements
can be introduced in a block, while still ensuring the correctness of that introduced block.
TraitCbC uses method calls and trait composition instead of refinement rules to guarantee
functional correctness. We formalize the concept of a trait-based object-oriented language
with a parametric specification language to allow a broader range of languages to adopt this
concept. The main advantage of TraitCbC is the simplicity of the refinement process that
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supports code reuse. We compared classic CbC, CbC-Block, and TraitCbC qualitatively
with regard to their programming constructs, tool support, and usability. CbC-Block
and TraitCbC both relax the strict guideline of CbC without losing the benefits of a
constructive program construction approach.

As future work, user studies could be conducted with all three approaches to further
evaluate the usability of the approaches. We want to investigate how the more flexible
construction approaches of TraitCbC and CbC-Block are received by developers. We
also want to compare the development times and potential types of programming errors
between the approaches. These user studies will help to develop concrete guidelines on which
approach is appropriate under which circumstances and with which team.
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Appendix A. Interview Questions

(1) Which task was more difficult and why?
(2) Which tasks were solved?
(3) What were the biggest problems during the development?
(4) Is the development according to CbC understandable?
(5) Is the use of the block rules understandable?
(6) Is the introduction of the block rules reasonable?
(7) Would you use the block rules when implementing according to CbC?
(8) How do you like the development in the textual editor?
(9) How do you like the development in the graphical editor?

(10) Is the textual or the graphical editor preferred?
(11) Which elements from the editors are particularly helpful or inadequate and why?
(12) What functionalities are still missing in the editors?
(13) What would it take for you to develop according to CbC in your workday?
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