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Abstract. This paper presents a new relaxed balanced concurrent bi-7

nary search tree using a single word compare and swap primitive, in8

which all operations are lock-free. Our design separates balancing ac-9

tions from update operations and includes a lock-free balancing mech-10

anism in addition to the insert, search, and relaxed delete operations.11

Search in our design is not affected by ongoing concurrent update op-12

erations or by the movement of nodes by tree restructuring operations.13

Our experiments show that our algorithm performs better than other14

state-of-the-art concurrent BSTs.15

Keywords: Concurrent Data Structure · Lock-Free· Binary Search Tree.16

1 Introduction17

Recently, the chip manufacturing company, AMD, has released the Threadripper18

CPU with 64 cores and 128 threads for desktops. As CPU manufacturers embed19

more and more cores in their multi-core processors, the need to design scalable20

and efficient concurrent data structures has also increased. Considerable research21

has been done towards making both blocking and non-blocking concurrent ver-22

sions of sequential data structures. Unlike blocking a concurrent data structure23

design is non-blocking, or lock-free, if it ensures at any time at least one thread24

can complete its operation. Performance has always been an important factor25

and will drive the design of these data structures.26

The Binary Search Tree (BST) is a fundamental data structure. Many concur-27

rent BST, both blocking and non-blocking, have been proposed [1,4–6,14,15,17].28

However, only a few designs include self-balancing operations. Most of the pub-29

lished work tries to emulate a sequential implementation. This results in per-30

formance compromise as strict sequential invariants must be maintained. In a31

concurrent environment the effect of some operations might cancel out the ef-32

fects of other operations. In the case of a self-balancing AVL tree each insert or33

delete operation requires a balancing operation to be performed immediately to34

preserve the height-balanced property. A balancing operation might cancel out35

the effects of other balancing operations on the same set of nodes.36

We have designed a lock-free relaxed balanced BST, hereafter referred as37

RBLFBST, in which balancing operations are decoupled from the regular in-38
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sert and delete operations1. The idea of relaxing some structural properties of39

a sequential data structure in their concurrent version has been tried in sev-40

eral previous works. Lazy deletion [9, 10] is an example of relaxing the require-41

ment that nodes are immediately removed from the data structure. In a relaxed42

self-balancing such as AVL [11], chromatic trees [16], rotation operations, are43

performed separately from the insertion and deletion operation.44

2 Related Work45

The first lock-free BST dates back to the 90’s [19] where the author suggested a46

design based on a threaded binary tree representation, but did not discuss the47

implementation of his design. Fraser at el [7] described a lock-free implementa-48

tion of an internal BST using multiple CAS (MCAS) to update multiple parts49

of the tree structure atomically. This algorithm uses a threaded representation50

of a BST. A delete operation required up to 8 memory locations to be updated51

atomically which added an appreciable overhead to the design. Based on the52

cooperative technique of [2], Ellen et al. [6] developed the first specific lock-free53

external BST algorithm, where internal nodes only act as routing nodes, which54

simplifies the deletion operation.55

Using a helping technique similar to [6], Howley and Jones [17] presented a56

non-blocking algorithm for internal BSTs. They added an extra field operation57

to each node of the BST, in which all the information related to a particular up-58

date operation can be stored. A delete operation in this work could use as many59

as 9 CAS instructions. However, the paper gives experimental results in which60

this design outperforms [6,15]. Aravind et el. [14] presented a lock-free external61

BST similar to [6], but using edge-marking. Being a leaf-oriented tree this design62

also has a smaller contention window for insert and delete operations and uses63

fewer auxiliary nodes to coordinate among conflicting operations. Another con-64

temporary paper [18] describes a general template for non-blocking trees. This65

template uses multi-word versions of LL/SC and VL primitives, making it easier66

to update multiple parts of the tree. The paper also presented a fine-grained67

synchronized version of a leaf-oriented chromatic tree based on their template.68

The concurrent AVL tree of Bronson et al. [15] uses lock coupling which uses69

per-node locks to remove conflicts between concurrent updates, and a relaxed70

balancing property which does not enforce the strict AVL property. This design71

uses a partially external tree such that by default nodes behave as per an internal72

tree but in order to simplify the removal of nodes with two children, the removed73

node objects are allowed to remain in the structure and act as routing nodes.74

This avoids the problem of locking large parts of the tree if a delete operation was75

implemented exactly as in a sequential BST. These deleted (logically) nodes can76

then be either removed during a later re-balancing operation or, if the node’s key77

is reinserted, the key can be made part of the set again. This partially external78

tree design was experimentally shown to have a small increase (0-20%) on the79

1 A poster describing the design of RBLFBST was presented in ICPP 2019, Kyoto,
Japan
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total number of nodes required to contain the key set. Crain at el. [4] present a80

lock-based tree in which balancing operations are decoupled from the insert and81

delete, and are done by a separate dedicated thread. Keys that are deleted are82

not immediately removed from the tree but are only marked as deleted as in [15].83

Later, a dedicated thread can remove nodes with deleted keys that have single84

or no child. The balancing mechanism used closely mirrors that in [3]. Despite85

claiming performance improvement by more than double to that of [15] another86

lock-based design this tree still is lock-based. More recently, Drachsler et al. [5]87

proposed a lock-based internal BST supporting wait-free search operations and88

lock-based update operations via logical ordering. Their design uses a similar89

threaded binary tree representation as in [19].90

All the designs of concurrent BST with balancing operations described above91

use locks to synchronize concurrent updates and therefore are not immune to92

problems that are associated with locking in general. Based on techniques used in93

previous research we present a concurrent BST in which all the update operations94

are lock-free. To our knowledge, our design is the first AVL tree based lock-free95

partially external BST which includes balancing operation for all the update96

operations.97

3 Algorithm Description98

3.1 Overview99

We implement a set using a BST. Our implementation supports concurrent ex-100

ecutions of search(k): to determine whether the key k is in the set, insert(k): to101

add the key k to the set, delete(k): to remove the key k from the set. To ensure102

that the tree does not become unbalanced, causing the operations to have linear103

cost, our design supports a relaxed tree balancing mechanism.104
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Fig. 1: left child pointer of Node D is identified as an insertion point for a ’new’ key. (a). An operation-
descriptor flagged as INSERT is inserted in to the operation field of node D (1). (b). After successful
insertion of operation-descriptor, the node having key ’new’ as a child of node D is physically inserted
tiny(2) and then the operation field of node D is cleared by setting its flag to NONE (3). (c) Shows
the case when the key to be inserted is found in the tree but is deleted. In this case, the deleted field
is set to false.

Any thread attempting to insert a key, upon finding the insertion point first105

announces its intention. The thread first collects the information required in106

an operation-descriptor and tries to insert it in the operation field of the node107

identified as the insertion point (the parent of the new node). Once the operation-108

descriptor is inserted into the node the key is considered to be part of the set.109
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Then the new node is inserted using a CAS to the appropriate child pointer of110

the parent node as shown in figure 1(a) and (b).111

To remove a key, first the node having the key to be removed is flagged as112

deleted (deleted bit is set to true) and then physically removed later. Once the113

deleted bit is set the key is considered to be removed (logically) from the tree.114

The physical removal is started by a separate maintenance thread by marking115

the deleted nodes having at most one child. Once marked any other thread can116

physically remove the node from the tree. Deleted nodes with two children are117

not physically removed from the tree until they have less than two children. This118

relaxed deletion is done to reduce contention in the tree as the delete algorithm119

does not need to locate and update the node to be deleted and the replacement120

node, which might involve several restarts. This relaxed deletion approach also121

means that a thread doing an insert operation may find the intended key already122

in the tree but the node is flagged as deleted. In this case, the key can be made123

part of the set again by setting the deleted bit off.124

23

Fig. 2: Right rotation example (similarly for the left). (a) Shows the case where the maintenance
thread has found a balance condition violation at node N and has successfully inserted a rotation
operation-descriptor in the operation field of the parent of N, P, N, and child of N, C. After that a
new node having key and other fields exactly as the node N is created. (b) Then the right and the
left pointer of the new node are allocated to those children which the node N would have got after
the rotation. (c) The next step is to insert the new node to its position after rotation. In this case,
the new node would be the right-child of node C. (d) The third and last step is to connect node the
parent P to child C effectively removing node N from the tree. A thread T1 carrying out search is
oblivious to the movement of nodes by rotations

Our balancing mechanism is based on heights of nodes and rotation opera-125

tions, as in sequential AVL trees. However, balancing is carried out separately to126

the update operations, similar to that of [4, 12]. The balancing adjustments are127

performed by the maintenance thread. If the balancing condition at any node128

is found to be violated then the maintenance thread collects all the information129

required to do rotation operation in to an operation-descriptor and tries to insert130

it in to the operation field of the parent of the node. After successfully inserting131

the operation descriptor, the maintenance thread (or any other thread) tries to132

do the same for the node and the appropriate child of the node involved in the133

rotation. Figure 2 shows the remaining steps for the rotation operation (right ro-134

tation) once the operation-descriptor is inserted in all the three nodes involved.135

Due to the ongoing concurrent updates, it is difficult to determine the exact136

height of a node at any point in the execution. Thus, the balancing condition137

in RBLFBST is based on apparent local heights of the node and its children. It138
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should also be noted that the rotation technique shown in figure 2 makes ongoing139

concurrent search operations oblivious to any node moving up or down the tree.140

1 struct node t {
2 int key
3 node t* left, right
4 operation t* op
5 int local height, lh, rh
6 bool deleted,removed
7 }
8 union operation t {
9 insert op t insert op

10 rotate op t rotate op
11 }
12 struct insert op t {
13 bool t is left
14 bool t is update=FALSE
15 node t* expected
16 node t* new
17 } insert op t

18 struct rotate op t {
19 int /*volatile*/ state =

UNDECIDED
20 node t* parent
21 node t* node
22 node t* child
23 operation t* pOp
24 operation t* nOp
25 operation t* cOp
26 bool rightR
27 bool dir
28 } rotate op t

29 //operation marking status

30 NONE 0, MARK 1, ROTATE 2,
INSERT 3

Algorithm 1: Basic structures used

141

Input: int k, node t* root
Output: true, if the key is found in

the set otherwise false

1 node t* node, next
2 operation t* node op
3 bool result = FALSE
4 node = root
5 node op = node→op
6 int node key
7 next = node→right
8 while !ISNULL(next) do
9 node = next

10 node op = node→op
11 node key = node→key
12 if k < node key then
13 next = node→left

14 else if k > node key then
15 next = node→right

16 else
17 result = TRUE
18 break

19 if result && node→deleted then
20 if GETFLAG(node→op) ==

INSERT then
21 if

node op→insert op.new→key
== k then

22 return TRUE

23 return FALSE

24 return result

Algorithm 2: Search

142

All the operations in RBLFBST are lock-free and linearisable. Once an op-143

eration is flagged with the corresponding FLAG and the operation-descriptor is144

inserted, it is considered to be logically completed. Any other thread can com-145

plete the announced operation using the information available in the operation-146

descriptor. Updating multiple locations using a single word CAS while preserving147

atomicity is a challenging task. Especially, in case of a rotation operation, three148

locations are needed to be updated atomically. We achieve this by careful design149

of our operation, described in detail in later sections. Another notable feature150

of this design is that we managed to keep the most frequently used operation in151

BSTs, search, free of additional coordination.152

3.2 Detailed Algorithm153

Structures: Algorithm 1 shows various structures used in the implementation.154

As in a sequential BST, a node has key, right, and left pointers to its correspond-155

ing child which are set to NULL for every new node. To synchronize various156

concurrent operations, each node has an operation pointer field, op, that is used157

to announce the intended operation and contains a pointer to that particular158

operation-descriptor. A node in RBLFBST has 3 heights, local-height : updated159
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by adding one to the maximum local-height of its children, right-height : local-160

height of right child, and left-height : local-height of left child, which are stored in161

fields local-heights, lh and rh respectively. In addition to that it has two boolean162

fields deleted and removed which are initialized to false. If a node has its deleted163

field set that means it is deleted from the set but could still be in the tree, while164

the removed field is set when the node is removed from the tree.165

int seek (int key, node t** parent,
operation t** parent op,
node t** node, operation t**
node op, node t* aux root,
node t* root)

1 int result, nodekey
2 node t* next
3 retry:
4 result = NOT FOUND L
5 *node = aux root
6 *node op = *node→op
7 if GETFLAG(*node op) 6= NONE

then
8 if auxroot == root then
9 bst help insert((operationt*)

UNFLAG(*node op), *node)
10 goto retry

11 next = (nodet*) (*node)→right
12 while !ISNULL(next) do
13 *parent = *node
14 *parent op = *node op
15 *node = next
16 *node op = (*node)→op
17 nodekey = (*node)→key
18 if key < nodekey then
19 result = NOT FOUND L
20 next = (*node)→left

21 else if key > node key then
22 result = NOT FOUND R
23 next = (*node)→right

24 else
25 result = FOUND
26 break

27 if GETFLAG(*node op)6= NONE
then

28 help(*parent, *parent op, *node,
*node op)

29 goto retry

30 return result

Algorithm 3: Seek

166

Input: int key, node t* root
Output: true: if the key is added to

the set, false otherwise

1 node t* parent
2 node t* curr
3 node t* new node = NULL
4 operation t* parent op
5 operation t* node op
6 operation t* cas op
7 int result
8 while TRUE do
9 result = seek(key, &parent,

&parent op, &node, &node op,
root, root)

10 if result == FOUND && !
node→deleted then

11 return FALSE

12 if new node == NULL then
13 new node = alloc node(k,v,0)

14 bool t is left = (result ==
NOT FOUND L)

15 node t* old
16 if is left then
17 old = node→left

18 else old = node→right
19

20 cas op = alloc op()
21 if result == FOUND &&

node→deleted then
22 cas op→insert op.is update =

TRUE

23 cas op→insert op.is left = is left
24 cas op→insert op.expected = old
25 cas op→insert op.new = new node
26 if CAS(&node→op, node op,

FLAG(cas op, INSERT)) ==
node op then

27 help insert(cas op, node)
28 return TRUE

Algorithm 4: Insert

167

The operation-descriptor is either an, insert op containing information for168

an intended insert, or a rotate op: containing information for a rotation. An169

insert op contains, new : pointer to the new node to be inserted, expected : pre-170

vious node, isLeft : indicating whether the new node would be inserted as a171

left-child or right-child, and is update: indicating whether it is a new node to be172

inserted or an existing deleted node to be made part of the set again. A rotate op173

descriptor contains in addition to the nodes involved in the corresponding opera-174

tion, a state field which can have three values, UNDECIDED: all nodes involved175

in the operation have not been grabbed yet, GRABBED: all the nodes that are176
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needed have been grabbed, ROTATED: indicating that the rotation has been177

completed.178

As in [9, 17], we use two least significant bits of a pointer address to store179

the operation status. The operation pointer, op, of a node could be in one of180

following statuses, NONE: meaning no operation is currently intended, MARK:181

this node can be physically removed, ROTATE: a rotate operation is intended,182

and INSERT: an insert operation is intended. The following macros are used to183

modify op’s status, FLAG(op, status): sets the operation pointer to one of the184

above status, GETFLAG(op): returns the status of op, UNFLAG(op): resets the185

status to NONE.186

Search: The search algorithm, outlined in algorithm 2, is mostly similar to187

the sequential search with additional checks due to other concurrent inserts. It188

traverses from the root2 to a leaf node looking for the key. If found, it breaks out189

of the loop as shown at lines 17-18. A further check is needed to see if the key190

is deleted from the set. In this case, if the corresponding node’s deleted field is191

set and its operation field is flagged as INSERT then the new key which is to be192

inserted, is compared with the key that the search is looking for at lines 19-21. If193

a match is found then the algorithm returns true line 22. If deleted bit is not set194

and the node is found then the algorithm simply returns the true at line 24. If195

the key is not found the search algorithm returns false line 24. Synchronization196

of any form is not needed in this search algorithm. Also, the search algorithm197

never restarts.198

seek: Algorithm 3 outlines the seek method which is used by both insert and199

delete algorithms to locate the position or potential position of a key, start-200

ing from a specified point aux root in the tree. The position is returned in the201

variables pointed to by arguments parent and node and the values of their op-202

eration fields are returned in the variables pointed to by arguments parent op203

and node op. The result of the seek can be one of three values, FOUND: if the204

key was found, NOT FOUND L: if the key was not found but would be posi-205

tioned at the left child of the node if it were inserted, NOT FOUND R: similar206

to NOT FOUND L but for the right child. The variable next is used to point to207

the next node along the seek path, the parent and parent op are used to record208

previous node. The check at lines 7-10 handles the case when the root has an209

ongoing operation to add to the empty tree. The seek loop traverses nodes one210

at a time until either the key is found or a null link is reached. Line 27 checks211

whether the node that is found does has an ongoing operation. If the node has212

an ongoing operation, the appropriate helping is done and seek restarts at lines213

28-29.214

Insert: The Insert algorithm, algorithm 4, begins by calling the seek method215

at line 9. Depending on the result of the seek method : case 1: the key is found216

2 For implementation purpose, the first node to be inserted in the empty tree is kept
as the right child of a fixed node root which has key assumed to be infinity
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and the corresponding node is not deleted ; case 2: the key is found and the217

corresponding node is deleted ; case 3: the key is not found in the tree. For case218

1, the insert method returns false at line 11. For both cases 2 and 3, a new-219

node and an insert op operation-descriptor are allocated with all the necessary220

information at lines 12-13 and 20-25 respectively. Furthermore, for case 2 the221

is update field of insert op descriptor is set to true at lines 21-22. Then a CAS222

is used to flag the operation field of the node to INSERT. If successful, the223

help Insert method is called to complete the physical insertion, otherwise it224

retries. If the help insert method finds is update field set it simply sets off the225

deleted bit of the node to make it part of the set again otherwise it inserts the226

new-node.227

Delete: Similar to the Insert, the Delete method starts by calling the seek228

method at line 6. If a node with the desired key is not found, it simply returns229

false at lines 7-8. If the key is found and is deleted, it further checks whether the230

node is flagged as INSERT, since an ongoing insert operation might be trying231

to insert the same key. If the node is not flagged as INSERT, the delete method232

returns false as the node is already deleted at lines 9-11. If the key is found and233

not deleted, the delete method tries to set the node’s deleted field to true and234

returns true on successful CAS at line 12-15.235

tree-maintenance: The tree maintenance actions involve checking for balance236

condition violations, rotation operations, and physical removal of deleted nodes237

having at most one child. The latter two operations are started by a maintenance-238

thread and can be completed by any other thread3.239

The maintenance-thread repeatedly performs a depth-first traversal in the240

background in which, at each node, it looks to see if the node can be removed241

and then adjusts heights. If it finds any node with deleted field set and at most242

one child, it then tries to flag the operation field of the node to MARK. If243

marking of the node is successful, the help marked method outlined in algorithm244

7 is called to physically remove the node from the tree. After adjusting heights,245

a check is performed to see if a balance violation has occurred. At any node,246

the balance condition is said to be violated if right-height and left-height of the247

node differ by 2 or more. If there is a balance violation at any node further248

checks are performed to determine whether a single rotation (left or right) or249

double rotations are required. Once the type (left or right) and number (single250

or double) of rotation operations are determined the rotation process is started251

as listed in the left rotate, algorithm 6, for the left rotation (similarly for the252

right rotation).253

In the left rotate method checks are performed to ensure that nodes that254

are involved in rotation operation are still intact at lines 2-6. The check at line255

7 is performed to see whether double rotations are needed. After this check, a256

rotate op descriptor is allocated at line 10 using appropriate values.257

3 Detailed explanations and full algorithm for tree-maintenance can be found in [13]
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Input: int k, node t* root
Output: true: if the node is found (not

already deleted) and deleted
from the set; else false

1 node t* parent
2 node t* node
3 operation t* parent op
4 operation t* node op
5 while TRUE do
6 int res = seek(k, &parent,

&parent op, &node, &node op,
root, root)

7 if (res 6= FOUND) then
8 return FALSE

9 if node→deleted then
10 if GETFLAG(node→op) 6=

INSERT then
11 return FALSE

12 else
13 if GETFLAG(node→op) ==

NONE then
14 if CAS(&node→deleted,

FALSE, TRUE) ==
FALSE then

15 return TRUE

Algorithm 5: delete

258

int leftrotate(node t* parent, int
dir, bool t rotate)

1 node t* node
2 if parent→removed then
3 return 0

4 node = (dir == 1) ?
(node t*)parent→right :
(node t*)parent→left

5 if ISNULL(node) ‖
ISNULL(node→right) then

6 return 0

7 if (node→right→lh -node→right→rh)
> 0 && !rotate then

8 return 3; //double rotation

9 if GETFLAG(parent→op) == NONE
then

10 operation t* rotateOp
11 rotateOp =

alloc rotateop(parent,node,
node→right, parent→op,
node→op,
node→right→op,dir,FALSE)

12 if CAS(&(parent→op),
rotateOp→rotate op.pOp,
FLAG(rotateOp,ROTATE)) ==
rotateOp→rotate op.pOp then

13 help rotate(rotateOp, parent,
node, node→right);

14 return 1;

Algorithm 6: left rotate

259

void help(node t* parent,
operation t* parent op, node t*
node, operation t* node op)

1 if GETFLAG(node op) == INSERT
then

2 help insert(UNFLAG(node op),
node)

3 else if GETFLAG(parent op) ==
ROTATE then

4 help rotate((UNFLAG(parent op),
parent,node,
parent op→rotate op.child)

5 else if GETFLAG(node op) ==
MARK then

6 help marked(parent, parent op,
node)

void help insert(operation t* op,
node t* dest)

1 if op→insert op.update then
2 CAS(&dest→deleted, TRUE,

FALSE)

3 else
4 node t** address = NULL
5 if op→insert op.is left then
6 address = (node t**)

&(dest→left)

7 else
8 address = (node t**)

&(dest→right)

9 CAS(address,
op→insert op.expected,
op→insert op.new)

10 CAS(&(dest→op), FLAG(op,
INSERT), FLAG(op, NONE))

void help marked(node t* parent,
operation t* parent op, node t*
node)

1 node t* child, address
2 if ISNULL((node t*) node→left) then
3 if ISNULL((node t*)

node→right) then
4 child =

(node t*)SETNULL(node)

5 else
6 child = (node t*) node→right

7 else
8 child= (node t*) node→left

9 node→removed = TRUE
10 operation t* cas op = alloc op()
11 cas op→insert op.is left = (node ==

parent→left)
12 cas op→insert op.expected = node
13 cas op→insert op.new = child
14 if CAS(&(parent→op), parent op,

FLAG(cas op, INSERT)) ==
parent op then

15 help insert(cas op, parent)

Algorithm 7: help,help insert,help marked

260
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Then, an attempt is made to insert rotate op to the parent of the node261

where the violation has occurred using CAS. If successful, a call is made to262

the help rotate method.263

Input: operation t* op, node t* parent, node t* node, node t* child

1 int seen state = op→rotate op.state
2 retry:
3 if seen state== UNDECIDED then
4 if GETFLAG(node→op)== NONE ||

GETFLAG(node→op) == ROTATE
then

5 if GETFLAG(node→op)==NONE
then

6 CAS(&(op→rotate op.node→op),
node→op,FLAG(op,ROTATE))

7 if GETFLAG(node→op) ==
ROTATE then

8 nodegrabbed:
9 if GETFLAG(child→op)

==NONE ||
GETFLAG(child→op)
==ROTATE then

10 if GETFLAG(child→op)
==NONE then

11 CAS(&(op→rotate op.
child→op), child→op,
FLAG(op,ROTATE))

12 if GETFLAG(child→op)
13 == ROTATE then
14 CAS(&

(op→rotate op.state),
UNDECIDED,
GRABBED)

15 seen state =GRABBED

16 else goto nodegrabbed
17

18 else
19 help(node,node→op,child,

child→op)
20 goto nodegrabbed

21 else
22 goto retry

23 else
24 help(parent,parent→op,node,

node→op)
25 goto retry

26 if seen state==GRABBED then
27 if op→rotate op.rightR then
28 // right rotation
29 //allocate newnode with
30 appropriate children and heights
31 //carry out rotation steps
32 using CAS

33 else
34 // left rotation
35 ///allocate newnode with
36 appropriate children and heights
37 //carry out rotation steps
38 using CAS

39 //parent pointer swing
40 if op→rotate op.rightR then
41 CAS(&op→rotate op.parent→left,

op→rotate op.node,child)

42 else
43 CAS(&op→rotate op.parent
44 →right, op→rotate op.node,child)

45 //adjust child and parent heights
46 CAS(&(op→rotate op.state),
47 GRABBED, ROTATED)
48 seen state=ROTATED;

49 if seen state==ROTATED then
50 //Clear parent,node,child operation
51 fields from ROTATE to NONE

52 bool t result = (seen state == ROTATED)
53 return result;

Algorithm 8: help rotate

The help rotate method, outlined in algorithm 8 can be called by any thread264

if it finds that the operation field of a node is flagged as ROTATE. Any thread265

executing help rotate tries to the grab remaining nodes namely, the node and266

the child by flagging their operation fields to ROTATE at lines 2-24. Failing to267

flag any node means that there is an ongoing operation. In this case, the thread268

helps the ongoing operation first, lines 18 and 23. Once both node and child are269

flagged the state field of rotate op descriptor is updated to a value GRABBED at270

line 13. The rest of the operation is carried out (lines 25-40) as shown in figure 2.271
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It should be noted that all of the methods involved in tree balancing except the272

help rotate are not exposed to any thread other than the maintenance-thread.273

help insert/Marked: Both these methods are called only after inserting ap-274

propriate flags to the operation field of the node. Once a node is flagged it will275

never be un-flagged until the operation is completed. The former adds a new276

node as a child of the node that was flagged as INSERT or simply sets off the277

deleted field depending on the is update field of the node, and the later physically278

removes the marked node from the tree.279

3.3 Correctness280

Lock-freedom : The non-blocking property of the algorithm is explained by281

describing the interactions that can occur between the threads that are executing282

read and write operations. A search will either locate the key it is searching for283

or terminate at a leaf node. The search operation never restarts. An Insert284

or Delete operation retries until it gets clean nodes through the seek method.285

Then, the insert tries to flag node as INSERT which cannot be undone until the286

physical insertion is completed. The Delete operation will only set the deleted287

bit when there is no other insert operation going on concurrently. The seek288

method restarts when it finds the leaf node has an ongoing operation when289

called from Insert, or if it finds the node having the key to be deleted has an290

ongoing operation when called from Delete. In both cases if the operation field291

of the node contains INSERT, ROTATE or MARK, this means an operation292

has been applied to the tree so system-wide progress was achieved. Assuming293

that there is no infinite addition of nodes on its search path, the seek method294

will eventually return clean nodes. An Insert operation could also restart if295

it fails to flag the node returned by seek to INSERT. In this case also it has296

encountered an ongoing operation. Any thread executing an operation will help297

the ongoing operation to its completion before restarting its own operation.298

Similarly, a rotation starts only when the maintenance-thread successfully flags299

the parent of the node where balance violation has occurred. If flagging of other300

nodes involved rotation fails in the help rotate method, this means there is an301

ongoing operation and the process completes that first before coming back to302

flagging the node to ROTATE.303

Linearisability : To prove the linearisability of RBLFBST, we first define304

the linearisation points of the Search, Insert, and Delete operations. The search305

operation can have two possible outcomes: a key is found in the set or not. The306

linearisation point for finding a key is the point at which an atomic read of the307

key has occurred at line 11. As our design allows a deleted key to be present in308

the tree it has to pass check at line 19. If the search does not find the key, it309

will linearise reading a NULL link at either line 13 or 15. If the tree is empty310

the search will linearise at reading the null link at line 7. A successful Insert311

operation will linearise when the operation-descriptor is successfully inserted to312
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the node returned by the seek algorithm at line 26. Failure of insert operation313

will have linearisation point at line 17 of the seek algorithm where it reads the314

key to be inserted already present in the tree. However, it has to verify if the315

key is logically deleted by failing the test at line 11 of the Insert algorithm.316

Similarly, the successful Delete operation will linearise at the successful CAS at317

line 14 of the delete algorithm. Linearisation point of the failed Delete will occur318

at line 7 of the delete algorithm where it is verified that the key is not present in319

the tree or is logically deleted by passing the checks at lines 10-12. An elaborate320

correctness discussion can be found in [13].321

4 Experimental Results322

To evaluate performance of RBLFBST we compared it with following recently323

published implementations : (i) non-blocking internal BST denoted by bst-howley324

[17]. (ii) lock-free external binary BST denoted by , bst-Aravind [14]. (iii) lock-325

based partially internal BST with balancing operations denoted by bst-bronson326

[15]. (iv) lock-based internal BST with balancing operations denoted by bst-327

drachsler [5].
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Fig. 3: Throughput in Mops(million of operation per second) for different algorithms for varying
parameters. Each row shows results for variations in the distribution of operations. Each column
shows results for different key ranges.

328

All experiments were conducted on a machine with 32 core AMD Ryzen329

Threadripper 2990WX processor, 64 hardware threads, and 32 GB RAM running330

x86 64 version of Ubuntu 18.04. All codes were implemented in C and compiled331

using gcc version 7.5.0 using optimization level O3. The source codes for other332

implementations were obtained from ASCYLIB [8].333

The comparison of RBLFBST with other implementation was done varying334

three parameters: the key range ([0, 32786], [0, 131072] and [0, 262144]), the335

distribution of operations, and the number of threads concurrently executing336
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on the data structures (1 to 64). Operations distribution considered were: (a)337

Write dominated workload: 80% updates, 20% search (b) mixed workload: 60%338

updates, 40% search (c) mixed workload: 40% updates, 60% search (d) read339

dominated workload: 20% updates, 80% search. Update operations had an equal340

number of insert and delete operations. All the operation types and the keys341

were generated using a pseudo-random number generator which were seeded342

with different values for each run. Each run was carried out for 5 seconds, and343

the results were collected averaging throughput over 20 runs. To mimic steady344

state the tree was filled with half the key range for each run.345

The graphs in figure 3 show the comparisons of other implementations against346

RBLFBST. Overall, RBLFBST scales very well as the number of threads in-347

creases. For smaller key range 215, RBLFBST outperforms its nearest competitor348

bst-aravind by a maximum of 90% and 85% in read-dominated (80% and 60%349

search respectively), by 87% and 70% (60% and 80% updates respectively) in350

write-heavy workloads. Our tree beats the other two lock-based trees with bal-351

ancing operations(bst-drachsler and bst-bronson) by 142% in 80% search work-352

load and more than 85% in update heavy workload for the same key range. The353

performance of RBLFBST for 217 key range again is better by 43% and 37% than354

its nearest lock-free competitor bst-howley in 60% and 80% update workload re-355

spectively. Similarly, it performs 56% and 61% better than the closest lock-based356

competitor bst-bronson in 60% and 80% update workload respectively. For the357

key range 218, RBLFBST beats bst-bronson by 24-38% and 20-30%, bst-howely358

by 10-31% and 20-30%, bst-aravind by 11-53% and 47-50% and bst-drachsler359

by 11-72% and 2-65% for the workload containing 80% and 60% updates re-360

spectively. The better performance of RBLFBST is due to the fact that it uses361

less number of expensive operations (CAS) than other lock-free implementations362

for insert and delete operations combined, thereby allowing more concurrency.363

The performance of our design goes down relatively for read-heavy workloads364

(80% read) particularly for the larger key ranges (218, 217). Larger key range will365

grow tree longer and more rotations will be performed. This is when the effect366

of threads helping rotation operation which can use up to 10 CAS instructions367

is clearly visible. However, the performance of RBLFBST in such cases is still368

better than all other implementations.369

5 Conclusion and Future work370

In this work, we presented a relaxed balanced lock-free binary search tree. In our371

design, all the set operations are lock-free. The search operation in our algorithm372

is oblivious to any structural changes done by other operations and is also free373

of any additional synchronization. Our results show its concurrent performance374

to be very good compared with other concurrent BSTs. We have discussed the375

correctness of RBLFBST operations. We are working on formal verification of376

our algorithm. We are also planning to apply the separation of tree balancing377

operations as well as relaxing delete operation to other lock-free balanced binary378

trees designs as future work.379
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