
Assignment on Ownership and Capabilities for G-INF00 58043 LE13 
“Perspective in Informatics 4” 
By Alex Potanin (alex@ecs.vuw.ac.nz) 
 
Submission Deadline: 10:30am Friday 31st of January 2020 (via email to Alex) 
 
Introduction 
The goal of this assignment is to write a reflective essay comparing two different approaches 
to ensuring encapsulation and control of access to sensitive parts of programs in modern 
programming languages. The first approach is known as ownership types and is supported by 
languages such as Rust as well as by prototypes used in research with a number of variations 
based on ownership annotations or type modifiers. The second approach is known as object 
capabilities and is supported by research languages such as E or Pony as well as some of the 
more practical implementations such as Caja. Object capabilities can be checked and enforced 
at runtime or there is research on static checking of capabilities as exemplified by Wyvern 
programming language discussed in class. 
Core (worth 50%) 
You will need to choose between an implementation-based or formalisation-based approach 
to this assignment. Both will receive equal treatment and would allow you to explore either 
your programming or mathematical side. To get the core of this assignment finished you will 
need to do one of the following two things: 
Implementation-Based Approach 

• Learn the basics of the Rust (http://www.rust-lang.org/) programming language using 
online materials such as tutorials etc. 

• Implement a variety of simple examples in the Rust showing off its support for 
ownership (and immutability) to demonstrate the advantage it gives for managing 
access to different components in your program. 

• Learn the basics of the E research programming language (http://erights.org/elang/) 
or Pony research programming languages (https://www.ponylang.io/) – ensure that 
you understand their support for object capabilities (and reference capabilities in case 
of Pony). 

• Implement a variety of simple examples in E (or Pony) showing off their support for 
object capabilities to demonstrate the advantage it gives for managing access to 
different components in your program. 

• Write up a summary of what examples you managed to implement in each of the two 
approaches and why they were good ways to show off the power of either ownership 
and immutability or object and reference capabilities. Try to do your own research to 
find other languages and good examples and feel free to discuss your ideas with Alex. 

• Expected size of the summary is around 2000 words. Additionally, I expect the 
submission of working code examples with instructions of how to compile and run 
them. 



Formalisation-Based Approach 
• Understand the foundations of Featherweight Generic Ownership and Immutability 

(https://dl.acm.org/citation.cfm?id=1869509 as well as the Technical Report here: 
https://dspace.mit.edu/handle/1721.1/36850). 

• Understand the foundations of both Object and Reference Capabilities (e.g. 
https://dl.acm.org/citation.cfm?doid=3152284.3133896 or 
https://dl.acm.org/citation.cfm?id=2398857.2384619 both can be a good start, while 
these two theses can point at further ideas: 
http://erights.org/talks/thesis/index.html and 
https://www.imperial.ac.uk/media/imperial-college/faculty-of-
engineering/computing/public/GeorgeSteed.pdf). 

• Write up a summary of the main features and challenges behind each of the 
formalisations of the ownership types, immutability, object and reference capabilities, 
and (if applicable) various type modifiers. Remember to explore further by using 
Google or asking Alex for more pointers. 

• Expected size of the summary is around 2000 words. Additionally, I expect the 
submission of the relevant formal details such as syntax and core typing rules for each 
system as an appendix that can copy the figures (with citations) from the relevant 
papers or technical reports. 

Completion (worth 30%) 
• Write a reflective essay comparing the general approaches of ownership and 

capabilities with a clear conclusion of their strengths and weaknesses and your 
personal reflection with justification of which one you think is more promising for the 
future programming languages being designed and developed as we speak. Your 
essay needs to contain objective justifications with citations and make it clear where 
you express your subjective options. 

• Expected size of the summary is around 2000 words. 
Challenge (worth 20%) 

• Propose your own variation of either a combination of ownership or immutability or 
type modifiers or object capabilities or refence capabilities and design a simple 
language model whose syntax supports it. 

• Write a description of the semantics of your proposed language combination and what 
benefits you expect it to bring. You do not need to have a sound formalism or 
guarantee that your approach would work in practice, but you need to justify your 
defence of selecting particular features and how they would provide benefit to 
programmers in terms of encapsulation or access control advantages. 

• Come up with some semantic type checking rules and prototype your language 
extension in Redex: https://docs.racket-lang.org/redex/ . 

• Submit both the write up of your variation, including the relevant syntax and type 
checking rules, and the implementation in Redex that I can run in Dr Racket or similar 
environment. 

• Expected size of the summary is around 1000 words. 
Summary 

• I expect to receive a single PDF file which contains the Core (2000 words), Completion 
(2000 words), and Challenge (1000 words) sections and appropriate appendixes or 
additional figures included all in a single file. You can use either LaTeX or Word or any 



other tool and you can use format of your choice – I just need to be able to open your 
single PDF file on my iPad to read and annotate it. 

• I expect to also receive a single ZIP file containing in appropriate folders the sample 
implementations or Racket (Redex) files with “readme.txt” in the root folder 
explaining the folder structure and how to compile and run everything. I use a Mac 
but have Windows in a virtual machine and access to Linux box – so if you included 
relevant instructions, I should be able to run your code. I am also happy for you to 
place all of the relevant files in a GitHub or similar shared repository and then give me 
a link to be able to checkout all the files from one place instead of sending me a ZIP 
file. 

 


