Are Your Incoming Aliases Really Necessary?
Counting the Cost of Object Ownership

Alex Potanin, Monique Damitio, James Noble
Victoria University of Wellington, New Zealand

Are Your Incoming Aliases Really Necessary?
Remembering the Cost of Object Ownership

Alex Potanin, Monique Damitio, James Noble
Victoria University of Wellington, New Zealand

Aliasing

"The big lie of object-oriented
programming is that objects
provide encapsulation.”

John Hogg
Islands: Aliasing Protection in Object-Oriented Languages

OOPSLA 1991

Object-Oriented
Programmlng

.O

Object-Oriented
Programming

Aliasing

Aliasing (The Good)

Aliasing (The Bad)

class Rectangle {
private Point topLeft;

private int w, h;
public Rectangle (Point topLeft, int w, int h)
{ this.topLeft = topLeft; thisw = w; this.h = h; }

;

Point p = new Point(100, 50);
Rectangle r = new Rectangle(p, 300, 200);

Aliasing (The Ugly)

@ Bugs due to unintentional aliasing are hard to
track down (e.g. applets breaking out of JDK vl.1.1
sandbox)

@ Typically enforced by coding style only (e.g. CMU
SEI CERT OBJ05-J advises to "defensively copy
private mutable class members before returning
their references”)

@ Still no mainstream language support for enforcing
per-object encapsulation after 20+ years... (Rust?)

Object Graph

&

Object Graph (Aliasing)

Ownership Tree

Ownership Tree: HelloWorld

ey -
- s
Y -
- ~ o - -
e e = -
e & - . »
2 & -,
s 7 W
5 & #*- . L 8
5 ¢ THO8
. » S -
/1] / , O
9 v/ # ° NP2 e 3
{ v S n T e gm
/s) b v »
4 ; o -
4 - 4 s
¥ » » ¢
/ -
’ v » 2 1\3\
. »
/ o E

5 - ;:::.:er:‘:u;w:ﬁi.

1 » = B
L) a
v ("9 -
R N om. W
\ >
* o
» - " . >

N e s,
i N -5
NN o, . e
N *
. b w
\ '\\: LN Y

Ownership Tree: LinkedList

Back to LinkedList

Encapsulated LinkedList

Element

\.>
1

_

Element

Element

LinkedList with Iterator

lterator

Link Link < Link

H

|Element | |Element | |Element |

Our Questions

@ How must designs change to respect
encapsulation?

® What performance cost do these changes
impose?

@ How does this impact programs’
performance?

More on Ownership

Owners as Accessors
IWACQO 2014

Owner-as-Accessor
Example

class Internal { String s = “abc”; }
class Owner {
Internal 1 = new Internal();
void modifyI() { i.s = “def”; } }
class External {
Internal 1; Owner o = new Owner();
void dolIt() {
this.1 = 0.1; // OK. Stores external ref.
o.modifyI(); // OK. Modifies Internal.
// this.i.s = “ghi1”; // WRONG. Not owner!

ferety

Java Collections
Framework v1.5.0

Implementations
Hash Table [Resizable Array||Balanced Tree||Linked List||Hash Table + Linked List

terfaces|List| [mereviist || feiskednied] |

In

@ Effectively: Lists and Maps (implemented using Hash,
Array, List or Tree).

@ Our Implementations Available Online:

http://homepages.ecsvuw.ac.nz/~alex/software/

Lists

ArrayList (and Vector)

What About LinkedList?

Element

\.>
1

_

Element

Element

Owner-as-Dominator

@ Naive implementation that uses just the

interface gives O(N?) iteration of the whole
list (duh!)

@ Single Place Cache (caching last accessed
item and its index) improves it back to O(N)
for non-random iteration - complies with
specification

Owner-as-Accessor
(Proxy Iterator)

Proxylterator

Owner-as-Accessor
(Indirection Iterator)

Other Possible Iterators

® "Magic Cookie” that uses a unique ID for
each Iterator and stores its internal state
inside a list in a hash map

@ See: "Iterators and Encapsulation” by James
Noble in TOOLS2000

Maps

Map Interfaces

| K,V :
| —
EntrySet

[Linked]HashMap and
Hashtable

- eon oo oy

IK,V:

\ | - - —
1 EntrySet |_é
\

\ | V
Values ~

Extended Map Interface

/A e A A A A A A A AR A AR R o Ak Rk ok ok ook R ko ok
/* OWNERSHIP additions for map external iterators */
sk ek e ok ok Rk e R ok ok Rk R R ok ek ko ok ok ko ok ok ok
int getModificationCount();

K getFirstKey();
K getNextKey(K key);

boolean hasNextKey(K key);
Map.Entry<K,V> entryProxyForKey(K key);
void forall{Procedure<K,V> proc);

Summary of Map
Changes

@ HashMap’s HashIterator was changed to utilise the
extended Map interface

@ LinkedHashMap was easier as the "getNextKey” could
make use of linked list woven through the maps entries

@ Hashtable (like Vector) was fundamentally the same but
used different interfaces and was fully synchronised

@ Finally, we provided 4 more owner-as-accessor
refactorings following the ones described in LinkedList

TreeMap

@ Originally planned to refactor separately...

@ Turns out we could re-use all the iterator,
view, and entfry objects from HashMap as
they were just using Map’s public interface!

@ Calling getNextKey(currentKey) results in
tracing down from the root of Red-Black
tree (more costly and complex operation), but
Improvements with caching are possible

Measurements

Three Microbenchmarks

@ Doug Leas IteratorLoops from JSR166

@ LinkedList Iteration: forward/backward/
disruptive

@ Doug Leas MapMicroBenchmark from JSR166

@ NB! We ensured that GC and JIT did not
interfere with our tests and ran each 25
times (see Georges et al OOPSLA2007)

IteratorLoops

& Original & QOasbh
Proxy & Proxy D.
“ Indirection Indirection D.

ArrayList HashMap HashSet Hashtable LinkedHashMap LinkedHashSet LinkedList TreeMap TreeSet Vector

LinkedList Iteration

100000

@—10000

@=—70000

@m=»30000

@—A0000

@m==50000

@m==60000

70000

80000

90000

100000

MapMicroBenchmark

“ HashMap & Hashtable © LinkedHashMap

Original OasD Proxy Proxy D. Indirection Indirection D.

Three Macrobenchmarks

@ DaCapo (Typical Usage, Improves on SPEC)
@ SPECjbb2005

@ SPECjvm2008

TABLE I
FULL RESULTS TABLE (FORMAT: MEAN|SD; STATISTICALLY SIGNIFICANTLY DIFFERENT VALUES SHOWN IN BOLD)

Benchmark | Original | ©OasD | Proxy | Proxy D. | Indirection |Indirection D.| Number | Percent
DaCapo (Time in ms; lower is better)
avrora 23003 (300 |22781 |415 | 22816 | 236 |22867 | 179 |22948 | 389 | 22873 (323 |[219049309 | 78.08%
batik 2516 |34 |2517 |19 (2520 |25 (2519 |19 (2519 |25 (2528 |30 26507124 | 31.37%
eclipse 53793 | 1031 | 53480 | 936 |53716 | 1010 53812 | 1329 | 53554 | 1406 | 53608 738 |[355465429 | 33.63%
fop 393 27 |397 29 3% 20 |397 23 (396 23 1399 20 1874892 | 18.07%
h2 24133 | 580 | 24238 (593 |24141 |517 | 24188 | 380 |23967 (320 23934 [375 | 90175446 | 8.04%
jython 15041 | 215 | 15476 (100 | 15725 | 107 | 15719 |53 |15837 |110 | 17050 | 145 | 159700109 7.49%
luindex 705 18 | 687 23 |714 22 | 713 19 (710 (40 |[718 51 327466 | 36.66%
lusearch 7251 |184 |7334 |105 (7181 |189 (7120 |198 |7226 |299 |7325 |78 11979688 | 5.45%
pmd 3944 |47 (3992 (39 (4046 |59 |4065 |72 (4005 |64 4054 |67 10712544 | 36.55%
sunflow 22656 | 518 |22560 (365 |23365 | 126 |22970 | 711 |22851 |523 |22331 (207 171198077 | <0.01%
tomcat 7576 | 108 | 7641 |135 (7687 |134 (7736 |111 |7733 |88 7661 |[118 | 16726923 | 13.95%
tradebeans 27952 | 409 | 27556 (494 | 28258 | 506 |28142 | 275 |27998 |328 | 28020 |340 1621619 | 33.00%
tradesoap 64476 | 1251 | 65193 [1549 | 65042 | 1712 | 65119 | 1463 (64390 1378 | 65111 | 1499 | 1631193 | 32.82%
xalan 26604 |384 | 26692 |318 | 26383 | 247 |26173 | 258 | 26125 |251 | 26310 (291 | 61153799 | 13.23%
SPECjbb2005 (Throughput; higher is better)
SPECjbb2005 [29598 [405 |[14062 [181 |28825 [860 [28540 | 619 [28959 [764 |28394 [641 | 35542855 | 4.87%
SPECjvm2008 (Time in ms; lower is better)
compress 46.56 |0.81 [46,77 [0.59 |46.71 |0.59 (4682 042 [46.83 (042 46.84 |0.57 199478 | 20.21%
crypto.aes 1849 |0.18 | 18.40 |0.13 | 1846 [0.10 [1848 |0.18 |18.42 |0.10 | 1848 |(0.19 254853 | 22.00%
crypto.rsa 3504 |0.25 |3489 (0.28 (3492 |031 |3495 036 3494 (025 3495 [0.27 | 6535358 | 11.18%
crypto.signverify [53.06 |0.27 | 5297 |0.31 |53.11 [0.29 |53.16 |036 |53.09 (038 |53.12 |0.29 | 3290783 | 2.13%
derby 21.55 [048 |21.63 |0.40 |21.56 |050 [21.73 043 |21.59 |038 |21.61 (033 | 89061937 | 3.04%
mpegaudio 15.08 |0.05 | 15.10 |0.05 |15.08 [0.06 [15.11 |0.05 |15.10 |0.06 |15.07 |0.06 209089 | 20.32%
fit.large 2361 (027 |23.53 [0.30 2349 |0.27 (2343 |0.28 |23.55 |0.24 |2351 |0.38 168290 | 23.78%
fft.small 8275 |4.49 |84.24 (521 |8498 |3.94 |8335 [4.01 |84.46 (470 |83.57 |4.26 439646 | 9.22%
lu.large 698 |144 |669 (124 |672 122|705 [139 (634 (096 702 |1.42 166728 | 23.92%
lu.small 107.98 | 0.87 | 107.61 (092 | 10748 |0.75 | 107.58 | 0.84 [107.94|0.70 | 107.82 | 0.85 642713 | 6.39%
monte_carlo | 1533 | 149 [|1533 (148 |15.65 |0.10 | 1567 |0.11 |15.63 |0.03 |1529 (147 179253 | 22.58%
sor.large 13.01 |0.02 [13.01 (002 [13.01 |0.01 |[13.02 |0.02 [12.99 |0.05 |13.01 |0.01 167449 | 23.92%
sor.small 5747 |0.11 |57.47 [0.10 |57.49 |0.10 |5747 |0.12 |57.43 |0.07 |57.44 |0.10 193425 | 21.16%
sparse.large |11.51 |0.23 |11.97 |1.22 |11.70 |[0.28 [11.82 |0.80 |11.71 |034 |11.77 (0.36 166691 | 23.98%
sparse.small [43.87 |0.11 [43.79 |0.12 [43.80 [0.18 [43.83 |0.11 |43.85 |0.18 [43.80 |0.15 182676 | 22.17%
serial 3322 (098 |32.46 |0.96 3327 |0.81 [33.04 |0.92 |32.88 |1.31 |3331 (0.89 | 51123977 | 5.68%
sunflow 20.51 |050 |20.48 (050 (2055 032 |2042 052 |20.22 |0.63 | 2051 |0.47 | 42506559 | 0.12%
xml.validation [63.38 |[1.09 |63.01 [096 |63.36 |1.03 |63.19 |142 [63.75 [1.39 |63.23 |1.03 | 10318760 | 3.33%

Macrobenchmarks

@ Full table available in our ICSE2013 paper and an
accompanying Technical Report ECSTR12-22:

http://ecsvictoria.ac.nz/Main/TechnicalReportSeries

@ In only 40 out of 165 refactored benchmarks have we detected
a statistically significant slow down!

® SPECjbb2005 is the heaviest user of collections (around 8% of
its running time spent in java.util.* methods according to

option -Xrunhprof : cpu-times) and as a result slowed down
the most

Conclusions

@ Encapsulation reduces performance by factors of 2 to 8 (in
particular on microbenchmarks)

® Owner-as-dominator is the worst (as expected)

@ Owner-as-accessor (even with dynamic checking) only
produces less than 3% slowdown on macrobenchmarks

® We hope these results may encourage object-oriented
designers to consider object encapsulation more carefully
when designing their programs - especially their use of
incoming aliases to circumvent encapsulation - and to ask
themselves: are their incoming aliases really necessary?

Since 2013...

@ State of the macro benchmarks is still “to be
improved”: some recent 2019 developments
on DeCapo update *as well as* a competing
performance corpora by Oracle Labs just
released at PLDI 2019 (Renaissance -
controversial)

@ New common data structure libraries but still
not necessarily treating aliasing more than
an algorithmic side effect.

Are your
Incoming
Aliases Really
Necessary!?

Counting the Cost
of Object Ownership
Alex Potanin,
Monique Damitio,
James Noble

Fri 24 May Session 2.3

