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Aliasing

"The big lie of object-oriented
programming is that objects
provide encapsulation.”

John Hogg
Islands: Aliasing Protection in Object-Oriented Languages

OOPSLA 1991
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Aliasing (The Good)




Aliasing (The Bad)

class Rectangle {
private Point topLeft;

private int w, h;
public Rectangle (Point topLeft, int w, int h)
{ this.topLeft = topLeft; thisw = w; this.h = h; }

;

Point p = new Point(100, 50);
Rectangle r = new Rectangle(p, 300, 200);




Aliasing (The Ugly)

@ Bugs due to unintentional aliasing are hard to
track down (e.g. applets breaking out of JDK vl.1.1
sandbox)

@ Typically enforced by coding style only (e.g. CMU
SEI CERT OBJ05-J advises to "defensively copy
private mutable class members before returning
their references”)

@ Still no mainstream language support for enforcing
per-object encapsulation after 20+ years... (Rust?)




Object Graph
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Object Graph (Aliasing)




Ownership Tree




Ownership Tree: HelloWorld
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Ownership Tree: LinkedList




Back to LinkedList




Encapsulated LinkedList
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LinkedList with Iterator
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Our Questions

@ How must designs change to respect
encapsulation?

® What performance cost do these changes
impose?

@ How does this impact programs’
performance?




More on Ownership




Owners as Accessors
IWACQO 2014




Owner-as-Accessor
Example

class Internal { String s = “abc”; }
class Owner {
Internal 1 = new Internal();
void modifyI() { i.s = “def”; } }
class External {
Internal 1; Owner o = new Owner();
void dolIt() {
this.1 = 0.1; // OK. Stores external ref.
o.modifyI(); // OK. Modifies Internal.
// this.i.s = “ghi1”; // WRONG. Not owner!

ferety




Java Collections
Framework v1.5.0

Implementations
Hash Table [Resizable Array||Balanced Tree||Linked List||Hash Table + Linked List

terfaces|List|  [mereviist || feiskednied] |

In

@ Effectively: Lists and Maps (implemented using Hash,
Array, List or Tree).

@ Our Implementations Available Online:

http://homepages.ecsvuw.ac.nz/~alex/software/




Lists




ArrayList (and Vector)




What About LinkedList?
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Owner-as-Dominator

@ Naive implementation that uses just the

interface gives O(N?) iteration of the whole
list (duh!)

@ Single Place Cache (caching last accessed
item and its index) improves it back to O(N)
for non-random iteration - complies with
specification




Owner-as-Accessor
(Proxy Iterator)

Proxylterator




Owner-as-Accessor
(Indirection Iterator)




Other Possible Iterators

® "Magic Cookie” that uses a unique ID for
each Iterator and stores its internal state
inside a list in a hash map

@ See: "Iterators and Encapsulation” by James
Noble in TOOLS2000




Maps




Map Interfaces

| K,V :
| —
EntrySet




[Linked]HashMap and
Hashtable
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Extended Map Interface

/A e A A A A A A A AR A AR R o Ak Rk ok ok ook R ko ok
/* OWNERSHIP additions for map external iterators */
sk ek e ok ok Rk e R ok ok Rk R R ok ek ko ok ok ko ok ok ok
int getModificationCount();

K getFirstKey();
K getNextKey(K key);

boolean hasNextKey(K key);
Map.Entry<K,V> entryProxyForKey(K key);
void forall{Procedure<K,V> proc);




Summary of Map
Changes

@ HashMap’s HashIterator was changed to utilise the
extended Map interface

@ LinkedHashMap was easier as the "getNextKey” could
make use of linked list woven through the maps entries

@ Hashtable (like Vector) was fundamentally the same but
used different interfaces and was fully synchronised

@ Finally, we provided 4 more owner-as-accessor
refactorings following the ones described in LinkedList




TreeMap

@ Originally planned to refactor separately...

@ Turns out we could re-use all the iterator,
view, and entfry objects from HashMap as
they were just using Map’s public interface!

@ Calling getNextKey(currentKey) results in
tracing down from the root of Red-Black
tree (more costly and complex operation), but
Improvements with caching are possible




Measurements




Three Microbenchmarks

@ Doug Leas IteratorLoops from JSR166

@ LinkedList Iteration: forward/backward/
disruptive

@ Doug Leas MapMicroBenchmark from JSR166

@ NB! We ensured that GC and JIT did not
interfere with our tests and ran each 25
times (see Georges et al OOPSLA2007)




IteratorLoops

& Original & QOasbh
Proxy & Proxy D.
“ Indirection Indirection D.

ArrayList HashMap HashSet Hashtable LinkedHashMap LinkedHashSet LinkedList TreeMap TreeSet Vector




LinkedList Iteration
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MapMicroBenchmark

“ HashMap & Hashtable © LinkedHashMap

Original OasD Proxy Proxy D. Indirection Indirection D.




Three Macrobenchmarks

@ DaCapo (Typical Usage, Improves on SPEC)
@ SPECjbb2005

@ SPECjvm2008




TABLE I
FULL RESULTS TABLE (FORMAT: MEAN|SD; STATISTICALLY SIGNIFICANTLY DIFFERENT VALUES SHOWN IN BOLD)

Benchmark | Original | ©OasD | Proxy | Proxy D. | Indirection |Indirection D.| Number | Percent
DaCapo (Time in ms; lower is better)
avrora 23003 (300 |22781 |415 | 22816 | 236 |22867 | 179 |22948 | 389 | 22873 (323 |[219049309 | 78.08%
batik 2516 |34 |2517 |19 (2520 |25 (2519 |19 (2519 |25 (2528 |30 26507124 | 31.37%
eclipse 53793 | 1031 | 53480 | 936 |53716 | 1010 53812 | 1329 | 53554 | 1406 | 53608 738 |[355465429 | 33.63%
fop 393 27 |397 29 3% 20 |397 23 (396 23 1399 20 1874892 | 18.07%
h2 24133 | 580 | 24238 (593 |24141 |517 | 24188 | 380 |23967 (320 23934 [375 | 90175446 | 8.04%
jython 15041 | 215 | 15476 (100 | 15725 | 107 | 15719 |53 |15837 |110 | 17050 | 145 | 159700109 7.49%
luindex 705 18 | 687 23 |714 22 | 713 19 (710 (40 |[718 51 327466 | 36.66%
lusearch 7251 |184 |7334 |105 (7181 |189 (7120 |198 |7226 |299 |7325 |78 11979688 | 5.45%
pmd 3944 |47 (3992 (39 (4046 |59 |4065 |72 (4005 |64 4054 |67 10712544 | 36.55%
sunflow 22656 | 518 |22560 (365 |23365 | 126 |22970 | 711 |22851 |523 |22331 (207 171198077 | <0.01%
tomcat 7576 | 108 | 7641 |135 (7687 |134 (7736 |111 |7733 |88 7661 |[118 | 16726923 | 13.95%
tradebeans 27952 | 409 | 27556 (494 | 28258 | 506 |28142 | 275 |27998 |328 | 28020 |340 1621619 | 33.00%
tradesoap 64476 | 1251 | 65193 [ 1549 | 65042 | 1712 | 65119 | 1463 (64390 1378 | 65111 | 1499 | 1631193 | 32.82%
xalan 26604 |384 | 26692 |318 | 26383 | 247 |26173 | 258 | 26125 |251 | 26310 (291 | 61153799 | 13.23%
SPECjbb2005 (Throughput; higher is better)
SPECjbb2005 [29598 [405 |[14062 [ 181 |28825 [860 [28540 | 619 [28959 [764 |28394 [641 | 35542855 | 4.87%
SPECjvm2008 (Time in ms; lower is better)
compress 46.56 |0.81 [ 46,77 [0.59 |46.71 |0.59 (4682 042 [46.83 (042 46.84 |0.57 199478 | 20.21%
crypto.aes 1849 |0.18 | 18.40 |0.13 | 1846 [0.10 [1848 |0.18 |18.42 |0.10 | 1848 |(0.19 254853 | 22.00%
crypto.rsa 3504 |0.25 |3489 (0.28 (3492 |031 |3495 036 3494 (025 3495 [0.27 | 6535358 | 11.18%
crypto.signverify [ 53.06 |0.27 | 5297 |0.31 |53.11 [0.29 |53.16 |036 |53.09 (038 |53.12 |0.29 | 3290783 | 2.13%
derby 21.55 [048 |21.63 |0.40 |21.56 |050 [21.73 043 |21.59 |038 |21.61 (033 | 89061937 | 3.04%
mpegaudio 15.08 |0.05 | 15.10 |0.05 |15.08 [0.06 [15.11 |0.05 |15.10 |0.06 |15.07 |0.06 209089 | 20.32%
fit.large 2361 (027 |23.53 [0.30 2349 |0.27 (2343 |0.28 |23.55 |0.24 |2351 |0.38 168290 | 23.78%
fft.small 8275 |4.49 |84.24 (521 |8498 |3.94 |8335 [4.01 |84.46 (470 |83.57 |4.26 439646 | 9.22%
lu.large 698 |144 |669 (124 |672 122|705 [139 (634 (096 702 |1.42 166728 | 23.92%
lu.small 107.98 | 0.87 | 107.61 (092 | 10748 |0.75 | 107.58 | 0.84 [ 107.94|0.70 | 107.82 | 0.85 642713 | 6.39%
monte_carlo | 1533 | 149 [|1533 (148 |15.65 |0.10 | 1567 |0.11 |15.63 |0.03 |1529 (147 179253 | 22.58%
sor.large 13.01 |0.02 [ 13.01 (002 [13.01 |0.01 |[13.02 |0.02 [12.99 |0.05 |13.01 |0.01 167449 | 23.92%
sor.small 5747 |0.11 |57.47 [0.10 |57.49 |0.10 |5747 |0.12 |57.43 |0.07 |57.44 |0.10 193425 | 21.16%
sparse.large |11.51 |0.23 |11.97 |1.22 |11.70 |[0.28 [11.82 |0.80 |11.71 |034 |11.77 (0.36 166691 | 23.98%
sparse.small  [43.87 |0.11 [43.79 |0.12 [43.80 [0.18 [43.83 |0.11 |43.85 |0.18 [43.80 |0.15 182676 | 22.17%
serial 3322 (098 |32.46 |0.96 3327 |0.81 [33.04 |0.92 |32.88 |1.31 |3331 (0.89 | 51123977 | 5.68%
sunflow 20.51 |050 |20.48 (050 (2055 032 |2042 052 |20.22 |0.63 | 2051 |0.47 | 42506559 | 0.12%
xml.validation [63.38 |[1.09 |63.01 [096 |63.36 |1.03 |63.19 |142 [63.75 [1.39 |63.23 |1.03 | 10318760 | 3.33%




Macrobenchmarks

@ Full table available in our ICSE2013 paper and an
accompanying Technical Report ECSTR12-22:

http://ecsvictoria.ac.nz/Main/TechnicalReportSeries

@ In only 40 out of 165 refactored benchmarks have we detected
a statistically significant slow down!

® SPECjbb2005 is the heaviest user of collections (around 8% of
its running time spent in java.util.* methods according to

option -Xrunhprof : cpu-times) and as a result slowed down
the most




Conclusions

@ Encapsulation reduces performance by factors of 2 to 8 (in
particular on microbenchmarks)

® Owner-as-dominator is the worst (as expected)

@ Owner-as-accessor (even with dynamic checking) only
produces less than 3% slowdown on macrobenchmarks

® We hope these results may encourage object-oriented
designers to consider object encapsulation more carefully
when designing their programs - especially their use of
incoming aliases to circumvent encapsulation - and to ask
themselves: are their incoming aliases really necessary?




Since 2013...

@ State of the macro benchmarks is still “to be
improved”: some recent 2019 developments
on DeCapo update *as well as* a competing
performance corpora by Oracle Labs just
released at PLDI 2019 (Renaissance -
controversial)

@ New common data structure libraries but still
not necessarily treating aliasing more than
an algorithmic side effect.
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