
Are Your Incoming Aliases Really Necessary?
Counting the Cost of Object Ownership

Alex Potanin, Monique Damitio, James Noble

Victoria University of Wellington, New Zealand

Are Your Incoming Aliases Really Necessary?
Remembering the Cost of Object Ownership

Alex Potanin, Monique Damitio, James Noble

Victoria University of Wellington, New Zealand

Aliasing

“The big lie of object-oriented
programming is that objects
provide encapsulation.”

John Hogg

Islands: Aliasing Protection in Object-Oriented Languages

OOPSLA 1991

Object-Oriented
Programming

http://openclipart.org/

Object-Oriented
Programming

Box Box

Book

Bird &
Book

Bird Bird

Aliasing

Box Box

Book

Bird &
Book

Bird Bird

Aliasing (The Good)

List

LinkLink Link

Element Element Element

Aliasing (The Bad)
class Rectangle {

private Point topLeft;

private int w, h;

public Rectangle (Point topLeft, int w, int h)

{ this.topLeft = topLeft; this.w = w; this.h = h; }

}

...

Point p = new Point(100, 50);

Rectangle r = new Rectangle(p, 300, 200);

...

p.setX(400);

Aliasing (The Ugly)

Bugs due to unintentional aliasing are hard to
track down (e.g. applets breaking out of JDK v1.1.1
sandbox)

Typically enforced by coding style only (e.g. CMU
SEI CERT OBJ05-J advises to “defensively copy
private mutable class members before returning
their references”)

Still no mainstream language support for enforcing
per-object encapsulation after 20+ years... (Rust?)

Object Graph
A

B

D

E

C

G

F
H

Object Graph (Aliasing)
A

B

D

E

C

G

F
H

Ownership Tree
A

B

D

E

C

G

F
H

Ownership Tree: HelloWorld

Ownership Tree: LinkedList

Back to LinkedList

List

LinkLink Link

Element Element Element

Encapsulated LinkedList

List

LinkLink Link

Element Element Element

LinkedList with Iterator

List

Link

Iterator

Link Link

Element Element Element

Our Questions

How must designs change to respect
encapsulation?

What performance cost do these changes
impose?

How does this impact programs’
performance?

More on Ownership
A

C

E

D

B

Owners as Accessors

(IWACO 2014)

Owner

Internal

External1

2

Internal

class Internal { String s = “abc”; }
class Owner {
Internal i = new Internal();
void modifyI() { i.s = “def”; } }

class External {
Internal i; Owner o = new Owner();
void doIt() {

this.i = o.i; // OK. Stores external ref.
o.modifyI(); // OK. Modifies Internal.
// this.i.s = “ghi”; // WRONG. Not owner!

} }

Owner-as-Accessor
Example

Java Collections
Framework v1.5.0

Effectively: Lists and Maps (implemented using Hash,
Array, List or Tree).

Our Implementations Available Online:

http://homepages.ecs.vuw.ac.nz/~alex/software/

Lists

ArrayList (and Vector)

List

Iterator

Element Element Element

Array

What About LinkedList?

List

LinkLink Link

Element Element Element

Owner-as-Dominator

Naive implementation that uses just the
interface gives O(N2) iteration of the whole
list (duh!)

Single Place Cache (caching last accessed
item and its index) improves it back to O(N)
for non-random iteration - complies with
specification

Owner-as-Accessor
(Proxy Iterator)

List

Link

ProxyIterator

Link Link

Iterator

2:itNext(iter
ator)

3:next()

1:next()

Owner-as-Accessor
(Indirection Iterator)

Link

IndirectionIterator

Link Link

2:itNext
(this)

4:getNext()

1:next()

3:getLink
()List

Other Possible Iterators

“Magic Cookie” that uses a unique ID for
each Iterator and stores its internal state
inside a list in a hash map

See: “Iterators and Encapsulation” by James
Noble in TOOLS2000

Maps

Map Interfaces

Values
V

Iterator
Entry<K,V>

Iterator
K

Iterator
V

EntrySet
K,V

Entry
K,V

Map
K,V

KeySet
K

*
*

*

*

[Linked]HashMap and
Hashtable

Values
V

Iterator
K

Iterator
V

EntrySet
K,V

Map
K,V

KeySet
K

*

EntryProxy
K,V

Iterator
Entry<K,V>

Entry
K,V

Extended Map Interface

Summary of Map
Changes

HashMap’s HashIterator was changed to utilise the
extended Map interface

LinkedHashMap was easier as the “getNextKey” could
make use of linked list woven through the map’s entries

Hashtable (like Vector) was fundamentally the same but
used different interfaces and was fully synchronised

Finally, we provided 4 more owner-as-accessor
refactorings following the ones described in LinkedList

TreeMap

Originally planned to refactor separately...

Turns out we could re-use all the iterator,
view, and entry objects from HashMap as
they were just using Map’s public interface!

Calling getNextKey(currentKey) results in
tracing down from the root of Red-Black
tree (more costly and complex operation), but
improvements with caching are possible

Measurements

Three Microbenchmarks

Doug Lea’s IteratorLoops from JSR166

LinkedList Iteration: forward/backward/
disruptive

Doug Lea’s MapMicroBenchmark from JSR166

NB! We ensured that GC and JIT did not
interfere with our tests and ran each 25
times (see Georges et al OOPSLA2007)

IteratorLoops

0"

10"

20"

30"

40"

50"

60"

70"

80"

ArrayList" HashMap" HashSet" Hashtable" LinkedHashMap" LinkedHashSet" LinkedList" TreeMap" TreeSet" Vector"

Original" OasD"
Proxy" Proxy"D."
IndirecIon" IndirecIon"D."

LinkedList Iteration

1"

10"

100"

1000"

10000"

100000"

Or
igi
na
l"(F
)"

Or
igi
na
l"(B
)"

Or
igi
na
l"(D
)"

Oa
sD
"(F
)"

Oa
sD
"(B
)"

Oa
sD
(D
)"

Pro
xy"
(F)
"

Pro
xy"
(B)
"

Pro
xy"
(D
)"

Pro
xy"
D."
(F)
"

Pro
xy"
D."
(B)
"

Pro
xy"
D."
(D
)"

Ind
ire
c:
on
"(F
)"

Ind
ire
c:
on
"(B
)"

Ind
ire
c:
on
"(D
)"

Ind
ire
c:
on
"D.
"(F
)"

Ind
ire
c:
on
"D.
"(B
)"

Ind
ire
c:
on
"D.
"(D
)"

10000"

20000"

30000"

40000"

50000"

60000"

70000"

80000"

90000"

100000"

MapMicroBenchmark

0"

20"

40"

60"

80"

100"

120"

140"

160"

Original" OasD" Proxy" Proxy"D." Indirec:on" Indirec:on"D."

HashMap" Hashtable" LinkedHashMap"

Three Macrobenchmarks

DaCapo (Typical Usage, Improves on SPEC)

SPECjbb2005

SPECjvm2008

Macrobenchmarks

Full table available in our ICSE2013 paper and an
accompanying Technical Report ECSTR12-22:

http://ecs.victoria.ac.nz/Main/TechnicalReportSeries

In only 40 out of 165 refactored benchmarks have we detected
a statistically significant slow down!

SPECjbb2005 is the heaviest user of collections (around 8% of
its running time spent in java.util.* methods according to
option -Xrunhprof:cpu-times) and as a result slowed down
the most

Conclusions
Encapsulation reduces performance by factors of 2 to 8 (in
particular on microbenchmarks)

Owner-as-dominator is the worst (as expected)

Owner-as-accessor (even with dynamic checking) only
produces less than 3% slowdown on macrobenchmarks

We hope these results may encourage object-oriented
designers to consider object encapsulation more carefully
when designing their programs - especially their use of
incoming aliases to circumvent encapsulation - and to ask
themselves: are their incoming aliases really necessary?

Since 2013...

State of the macro benchmarks is still “to be
improved”: some recent 2019 developments
on DeCapo update *as well as* a competing
performance corpora by Oracle Labs just
released at PLDI 2019 (Renaissance -
controversial)

New common data structure libraries but still
not necessarily treating aliasing more than
an algorithmic side effect.

