
Ownership and Immutability

Dr Alex Potanin

Aliasing

“The big lie of object-oriented programming is
that objects provide encapsulation.”

John Hogg
Islands: Aliasing Protection in Object-Oriented Languages

OOPSLA 1991

2

Based on Confined Types by Bokowski and Vitek (OOPSLA 1998)

Identities[] all =
SM.getAllSystemIdentities()

Identities[] me = getSigners()
// Say, item 42 is “allow all”
me[0] = all[42];

Aliasing (The Ugly)

3

java.security package
All System
Identities

Identity
Identity
Identity

…

Identity
Identity
Identity
Identity
Identity
Identity
Identity

Some Applet
Identity
Identity

Malicious
Applet

Identity
Identity
Identity

• Bug in Sun JDK v1.1.1
• Reported by the Secure Internet
Programming Group in 1997

Malicious Applet

getAllSystemIdentities()

getSigners()

// Copy extra permissions
// (Identities) from a
// complete list to
// applet specific list!

THE IDEA: GENERIC OWNERSHIP

Map books = new Map();
books.put(“Wisdom”, new Book());
Object b = books.get(“Wisdom”); // Don’t know what get returns!
Vector aliasedNodes = books.expose(); // Private field exposed!

Motivation (simple Map in Java <5)
class Node { . . . }
public class Map {
private Vector nodes;
public Vector expose() { return this.nodes; }
void put(Comparable key, Object value) {
nodes.add(new Node(key, value));

}
Object get(Comparable k) {
Iterator i = nodes.iterator();
while (i.hasNext()) {
Node mn = (Node) i.next();
if (((Comparable) mn.key).equals(k)) return mn.value;

}
return null;

}
}

5

Book

Book

Box

Map<String, Book> books = new Map<String, Book>();
books.put(“Wisdom”, new Book());
Book b = books.get(“Wisdom”); // Type of Map knows what get returns
Vector<Node<String, Book>> aliasedNodes = books.expose(); // Exposed!

Map books = new Map();
books.put(“Wisdom”, new Book());
Object b = books.get(“Wisdom”); // Don’t know what get returns!
Vector aliasedNodes = books.expose(); // Private field exposed!

Motivation (generic Map in Java 5+)
class Node<Key extends Comparable, Value> { . . . }
public class Map<Key extends Comparable, Value> {
private Vector<Node<Key, Value>> nodes;
public Vector<Node<Key, Value>> expose() {
return this.nodes;

}
void put(Key key, Value value) {
nodes.add(new Node<Key, Value>(key, value));

}
Value get(Key k) {
Iterator<Node<Key, Value>> i = nodes.iterator();
while (i.hasNext()) {
Node<Key, Value> mn = i.next();
if (mn.key.equals(k)) return mn.value;

}
return null;

}
}

6

Box (Bird)

Box (Book)

Map<this, world, world> books = new Map<this, world, world>();
books.put(“Wisdom”, new Book());
Book<world> b = books.get(“Wisdom”); // Don’t know what get returns!
Vector<this, this> aliasedNodes = books.expose(); // books. is not this.

Map<String, Book> books = new Map<String, Book>();
books.put(“Wisdom”, new Book());
Book b = books.get(“Wisdom”); // Type of Map knows what get returns
Vector<Node<String, Book>> aliasedNodes = books.expose(); // Exposed!

Motivation (ownership Map in Safe Java)
class Node<nodeOwner, kOwner, vOwner> { . . . }
public class Map<mOwner, kOwner, vOwner> {
private Vector<this, this> nodes;
public Vector<this, this> expose() { return this.nodes; }
void put(Comparable<kOwner> key, Object<vOwner> value) {
nodes.add(new Node<this, kOwner, vOwner>(key, value));

}
Object<vOwner> get(Comparable<kOwner> key) {
Iterator<this, this> i = nodes.iterator();
while (i.hasNext()) {
Node<this, kOwner, vOwner> mn =
(Node<this, kOwner, vOwner>) i.next();

if (mn.key.equals(key)) return mn.value;
}
return null;

}
}

7

Book (Me)

Book (Robert)

Map<this>[String<world>, Book<world>] books =
new Map<this>[String<world>, Book<world>] ();

books.put(“Wisdom”, new Book<world>());
Book<world> b = books.get(“Wisdom”); // Map type knows what get returns
Vector<this>[Node<this>[String<world>, Book<world>]] aliasedNodes =

books.expose(); // books. is not this.

Map<this, world, world> books = new Map<this, world, world>();
books.put(“Wisdom”, new Book());
Book<world> b = books.get(“Wisdom”); // Don’t know what get returns!
Vector<this, this> aliasedNodes = books.expose(); // books. is not this.

Motivation (ownership & generic Map?)
class Node<nodeOwner>
[Key<kOwner> extends Comparable<kOwner>, Value<vOwner>] { . . . }

public class Map<mOwner>
[Key<kOwner> extends Comparable<kOwner>, Value<vOwner>] {
private Vector<this>[Node<this>[Key<kOwner>, Value<vOwner>]] nodes;
public Vector<this>[Node<this>[Key<kOwner>, Value<vOwner>]] expose() {
return this.nodes;

}
void put(Key<kOwner> key, Value<vOwner> value) {
nodes.add(new Node<this>[Key<kOwner>, Value<vOwner>](key, value));

}
Value<vOwner> get(Key<kOwner> key) {
Iterator<this>[Nodes<this>[Key<kOwner>, Value<vOwner>]] = nodes.iterator();
while(i.hasNext()) {
Node<this>[Key<kOwner>, Value<vOwner>] mn = i.next();
if (mn.key.equals(k)) return mn.value;

}
return null;

}
}

8

See page 29 of Safe Java: A Unified Type System for Safe Programming
(PhD Thesis by Chandra Boyapati) for the origins of this syntax.

Map<this>[String<world>, Book<world>] books =
new Map<this>[String<world>, Book<world>] ();

books.put(“Wisdom”, new Book<world>());
Book<world> b = books.get(“Wisdom”); // Map type knows what get returns
Vector<this>[Node<this>[String<world>, Book<world>]] aliasedNodes =

books.expose(); // books. is not this.

Motivation (Generic Ownership TM Map)
class Node<Key extends Comparable, Value, Owner extends World> { . . . }
public class Map<Key extends Comparable, Value, Owner extends World> {
private Vector<Node<Key, Value, This>, This> nodes;
public Vector<Node<Key, Value, This>, This> expose() { return this.nodes; }
public void put(Key key, Value value) {
nodes.add(new Node<Key, Value, This>(key, value));

}
public Value get(Key key) {
Iterator<Node<Key, Value, This>, This> i = nodes.iterator();
while (i.hasNext()) {
Node<Key, Value, This> mn = i.next();
if (mn.key.equals(key)) return mn.value;

}
return null;

}
}

9

Box of My Computer Books

Map<String, Book, This> books = new Map<String, Book, This>();
books.put(“Wisdom”, new Book());
Book b = books.get(“Wisdom”); // Type of Map knows what get returns
Vector<this, this> aliasedNodes = books.expose(); // books. is not this.

OIGJ: OWNERSHIP AND
IMMUTABILITY GENERIC JAVA

10

Ownership + Immutability

• Our previous work
– OGJ: added Ownership to Generic Java
– IGJ: added Immutability to Generic Java

• This work
– OIGJ: combine Ownership + Immutability
– The sum is greater than its parts

• Immutable cyclic data structures (e.g. doubly linked list)
• IGJ could not type check Java Collections
• OIGJ can, without any code changes

11

Problem 1: Representation exposure

• Internal representation leaks to the outside
– private doesn’t offer real protection!
class Class {
private List signers;
public List getSigners() {
return this.signers;

}
}
– http://java.sun.com/security/getSigners.html
– Bug: the system thinks that code signed by one

identity is signed by a different identity

12

Forgot to copy signers!

Class

Solution for Representation Exposure

• Ownership: owner-as-dominator
– Class should own the list signers
– No outside alias can exist
– Ownership can be nested: note the tree structure

13

signerNsigner2signer1

entryNentry2

signers

entry1 …

…

X

X

X

Problem 2: Unintended Modification

• Modification is not explicit in Java
– Can Map.get() modify the map?
for (Object key : map.keySet())

map.get(key);

– Throws ConcurrentModificationException for
the following map:

new LinkedHashMap(100, 1, true)

14

Reorders elements according to
last-accessed (like a cache)

Solution: Immutability

• Object immutability
– mutable / immutable

• Readonly references
– mutable / immutable / readonly

class Student {
@Immutable Date dateOfBirth; ...
void setTutor(@ReadOnly Student tutor) @Mutable { ... }

}

15

Method may modify the this object

Raw vs Cooked

• Creation of an immutable object
– Raw state: Fields can be assigned
– Cooked state: Fields cannot be assigned
– When does an object become cooked?

• Traditionally
– An object is cooked when its constructor finishes

16

OIGJ’s novel idea

• Connect ownership & immutability
– An object is cooked when its owner’s constructor

finishes
– The outside world will not see this cooking phase
– The complex object and its representation

become immutable simultaneously
– Enables creation of immutable cyclic structures

17

Cooking LinkedList (1 of 2)

• Goal: No refactoring

18

1 : LinkedList(Collection<E> c) {
2 : this(); // Initializes this.header
3 : Entry<E> succ = this.header, pred = succ.prev;
4 : for (E e : c) {
5 : Entry<E> entry =
6 : new Entry<E>(e,succ,pred);
7 : // An entry is modified after its constructor finished
8 : pred.next = entry; pred = entry;
9 : }
10: succ.prev = pred;
11: }

Cooking LinkedList (2 of 2)

19

1 : LinkedList(@ReadOnly Collection<E> c) @Raw {
2 : this(); // Initializes this.header
3 : @This @I Entry<E> succ = this.header, pred = succ.prev;
4 : for (E e : c) {
5 : @This @I Entry<E> entry =
6 : new @This @I Entry<E>(e,succ,pred);
7 : // An entry is modified after its constructor finished
8 : pred.next = entry; pred = entry;
9 : }
10: succ.prev = pred;
11: }

OIGJ Annotations

20

Immutability hierarchy
ReadOnly – no modification
Raw – object under construction

Ownership hierarchy
World – anyone can access
This – this owns the object

World

This

ReadOnly

Raw

Mutable

Immutable

Immutability

21

1:class Foo {
2: // An immutable reference to an immutable date.

@Immutable Date imD;
3: // A mutable reference to a mutable date.

@Mutable Date mutD;
4: // A readonly reference to any date.

@ReadOnly Date roD = ... ? imD : mutD;
4: // A reference to a date with the same immutability as this.

@I Date sameI;
5: // Can be called on any receiver; cannot mutate this.

int readonlyMethod() @ReadOnly {...}
6: // Can be called only on mutable receivers; can mutate this.

void mutatingMethod() @Mutable {...}
7:}

Ownership

22

1: // A date with the same owner and immutability as this
@O @I Date sameD;

2: // A date owned by this; it cannot leak.
@This @I Date ownedD;

3: // Anyone can access this date.
@World @I Date publicD;

class LinkedList<E> {
@This @I Entry<E> header;
...

}
class Entry<E> {

@O @I Entry<E> next, prev;
...

}

Formalisation: Featherweight OIGJ

• Novel idea: Cookers
– Every object in the heap is of the form:

or
– y is the owner of x
– z is the cooker of x, i.e., x becomes cooked when

the constructor of z finishes
– Formalism tracks the ongoing constructors
– Subtyping rules connect cookers and owners

• Proved soundness and type preservation

23

xàFoo<y,Mutable> xàFoo<y,Immutablez>

Case Study

• Implementation uses the Checkers Framework
– Only 1600 lines of code (but still a prototype)
– Requires type annotations available in JSR308

• Java Collections case study
– 77 classes, 33K lines of code
– Only 85 ownership-related annotations
– Only 46 immutability-related annotations

24

Case Study Conclusions

• Verified that collections own their
representation

• Method clone does not type check
– It is broken: shallow copy breaks ownership

• Suggestion: sheep clone
– Ownership-aware copy: between shallow and

deep copy
– Compiler-generated clone that nullifies fields,

and then calls a user-defined copy method

25

Related Work

• Universes
– Relaxed owner-as-dominator to owner-as-modifier

• Reference immutability
– C++’s const
– Javari

• Initialisation & Immutability
– X10’s proto (gone?), Frozen object, Flexible

Initialisation
• Ownership & Immutability

– JOE3, MOJO, Delayed Types

26

Conclusions
• Ownership Immutability Generic Java (OIGJ)

– Simple, intuitive, static, backward compatible
• Connected ownership & immutability

– Cyclic immutable structures, factory and visitor design
patterns

• Case study showing usefulness
– No syntax changes or runtime overhead
– Verified encapsulation of Java collections
– Few annotations due to smart defaults

• Formal proof of soundness (see TR for FOIGJ:
– https://dspace.mit.edu/handle/1721.1/36850

27

Follow Up Work
ECOOP 2013

28

29

APPENDIX: OIGJ TYPE RULES

30

OIGJ Typing Rules

• 14 typing rules (see paper and TR)
• Our formalisation uses generic types following

our previous work
• We will highlight the following:

– Ownership Nesting
– Field Access
– Field Assignment
– Method Invocation
– Method Guards

31

(F)OIGJ Syntax: Fields

• Every type contains two extra generic parameters
32

1:class Foo<O extends World, I extends ReadOnly> {
2: // An immutable reference to an immutable date.

Date<O,Immutable> imD = new Date<O,Immutable>();
3: // A mutable reference to a mutable date.

Date<O,Mutable> mutD = new Date<O,Mutable>();
4: // A readonly reference to any date. Both roD and imD cannot mutate

// their referent, however the referent of roD might be mutated by an
// alias, whereas the referent of imD is immutable.
Date<O,ReadOnly> roD = ... ? imD : mutD;

5: // A date with the same owner and immutability as this
Date<O,I> sameD;

6: // A date owned by this; it cannot leak.
Date<This,I> ownedD;

7: // Anyone can access this date.
Date<World,I> publicD;

(F)OIGJ Syntax: Methods

• Method guard <T extends U>? does two things:
– The method can be called only if T extends U
– Inside the method, the bound of T is assumed to be U 33

8 : // Can be called on any receiver; cannot mutate this.
<I extends ReadOnly>? int readonlyMethod(){...}

9 : // Can be called only on mutable receivers; can mutate this.
<I extends Mutable>? void mutatingMethod(){...}

10: // Constructor that can create (im)mutable objects.
<I extends Raw>? Foo(Date<O,I> d) {

11: this.sameD = d;
12: this.ownedD = new Date<This,I>();
13: // Illegal, because sameD came from the outside.

// this.sameD.setTime(...);
14: // OK, because Raw is transitive for owned fields.

this.ownedD.setTime(...);
15: }

Ownership Nesting

• It is illegal because we can store l2 in this variable:

34

The main owner parameter must be inside any
other owner parameter.

List<This, I,Date<World,I>> l1; // Legal nesting
List<World,I,Date<This, I>> l2; // Illegal!

public static Object<World,ReadOnly> alias_l2;

Field Access/Assignment

35

this-owned fields can be accessed/assigned
only via this

1: class Foo<O extends World, I extends ReadOnly> {
2: Date<This,I> ownedD; // this-owned field
3: Date<O,I> sameD;
4: <I extends Mutable>? void bar(Foo<This,I> other) {
5: this.ownedD = …; // Legal: assign via this
6: other.ownedD = …; // Illegal: not via this
7: other.sameD = …; // Legal: not this-owned
8: }

1 : class Foo<O extends World, I extends ReadOnly> {
2 : Date<O,I> sameD;
3 : <I extends Raw>? void bar(
4 : Foo<?,Mutable> mutableFoo,
5 : Foo<?,ReadOnly> readonlyFoo,
6 : Foo<?,I> rawFoo1,
7 : Foo<This,I> rawFoo2) {
8 : mutableFoo.sameD = …; // Legal: object is Mutable
9 : readonlyFoo.sameD = …; // Illegal: object is not Raw nor Mutable
10: rawFoo1.sameD = …; // Illegal: object is not this nor this-owned
11: rawFoo2.sameD = …; // Legal: object is Raw and this-owned
12: this.sameD = …; // Legal: object is Raw and this
13: }

Field Assignment

36

1) A field can be assigned only if the object is Raw or
Mutable.

2) If it is Raw, then the object must be this or this-
owned.

1 : class Foo<O extends World, I extends ReadOnly> {
2 : Date<This,I> m1() { … } // Parameter is this-owned
3 : <I extends Raw>? void m2() { … }
4 : <I extends Raw>? void bar(
5 : Foo<?,I> rawFoo1,
6 : Foo<This,I> rawFoo2) {
7 : this.m1(); // Legal: object is this
8 : rawFoo2.m1(); // Illegal: object is not this
9 : rawFoo1.m2(); // Illegal: object is not this nor this-owned
10: rawFoo2.m2(); // Legal: both Raw and object is this-owned
11: this.m2(); // Legal: both Raw and object is this
12: }

Method Invocation

37

Method invocation is the same as field access/assignment:
1) If any parameter is this-owned, then the receiver must be

this.
2) If the guard is Raw and the object is Raw, then the receiver

must be this or this-owned.

Method Guards

38

1: class Foo<O extends World, I extends ReadOnly> {
2: <I extends Raw>? void rawM() { … }
3: <I extends Mutable>? void bar(
4: Foo<?,ReadOnly> readonlyFoo,
5: Foo<?,I> mutableFoo) {
6: readonlyFoo.rawM(); // Illegal: ReadOnly is not a subtype of Raw

// The bound of I in this method is Mutable
7: mutableFoo.rawM(); // Legal: Mutable is a subtype of Raw
8: this.rawM(); // Legal: Mutable is a subtype of Raw
9: }

Guard “<T extends U>?” has a dual purpose:
1) The receiver’s T must be a subtype of U.
2) Inside the method, the bound of T is U.

Conditional Java (cJ) proposed method guards for Java

Final Points

• We use smart defaults:
– Typically @O and @I
– Statics are @World and @Mutable

• Ownership assumes:
– Inner classes have access to the outer class (a la

Boyapati)
– Local variables can point at anything as long as the

heap invariant is maintained (a la Clarke and
Drossopoulou)

39

