Ownership and Immutability

Dr Alex Potanin

CAPITAL THINKING.

GLOBALLY MI L _~ TE HERENGA WAKA
MAI | TE IHO KI TE PAE

Aliasing

“The big lie of object-oriented programming is
that objects provide encapsulation.”

John Hogg
Islands: Aliasing Protection in Object-Oriented Languages
OOPSLA 1991

Aliasing (The Ugly)

e BuginSunJDKv1.1.1 : :

e Reported by the Secure Internet Java.securlty paCkage

Programming Group in 1997 f All System \
Ildentiti

(Some Applep STHHES

Malicious Applet | Identity | Identity

| Identity | Identity

o 8 / ldentity

getAllSystemIdentities () > Identity

. ldentity

getSigners() " Malicious) Identity

Applet ldentity

IdentGdpygs éktald permissions ~> dentity Identity

/M. @RI R INStegY derbht 1S () identity ldentity

A ;a&nas'félténq Tseety g O dentity Identity
{@]gppi% é%eé?ﬁ% 1 €1 _) _ y

Based on Confined Types by Bokowski and Vitek (OOPSLA 1998)

THE IDEA: GENERIC OWNERSHIP

CAPITAL THINKING.

GLOBALLY MI L _~ TE HERENGA WAKA
MAI | TE IHO KI TE PAE

Motivation (simple Map in Java <5)

class Node { . . . }
public class Map {
private Vector nodes;

public Vector expose() { return this.nodes; } K“ﬁﬂﬁi&“w

void put(Comparable key, Object value) { .
nodes.add (new Node(key, value)); L~‘%%E§

¥

Object get(Comparable k) {

Iterator i = nodes.iterator();

. . Book
while (i.hasNext()) {

Node mn = (Node) 1i.next();

if (((Comparable) mn.key).equals(k)) return mn.value;

}

return null;

Map books = new Map();
books.put(“Wisdom”, new Book());

Object b = books.get(“Wisdom”); // Don’t know what get returns!
Vector aliasedNodes = books.expose(); // Private field exposed!

Motivation (generic Map in Java 5+)

class Node<Key extends Comparable, Value> { . . . }
public class Map<Key extends Comparable, Value> {
private Vector<Node<Key, Value>> nodes;
public Vector<Node<Key, Value>> expose() {
return this.nodes;
Y
void put(Key key, Value value) {
nodes.add(new Node<Key, Value>(key, value));
Y
Value get(Key k) {
Iterator<Node<Key, Value>> i = nodes.iterator();
while (i.hasNext()) {
Node<Key, Value> mn = 1i.next();
if (mn.key.equals(k)) return mn.value;

} Box (Book)

return null;

Map<bbokngs BewkMapddks = new Map<String, Book>();
books.put(“Wisdom”, new Book());

Bbgkchb & bobkskgegdtWiddemdhy)///Typenot Mapwknbws ghatrgetrneturns,
Vector<Hbddes&iNodgs BobkoksaéxpeedNddes/=Pbovkteefpetd (2xpddelxposed!

Motivation (ownership Map in Safe Java)

class Node<nodeOwner, kOwner, vOwner> { . . . }
public class Map<mOwner, kOwner, vOwner> { Book (Me)
private Vector<this, this> nodes; .
public Vector<this, this> expose() { return this.nodes; }
void put(Comparable<kOwner> key, Object<vOwner> value) {
nodes.add(new Node<this, kOwner, vOwner>(key, value));

¥
Object<vOwner> get(Comparable<kOwner> key) {

Iterator<this, this> i = nodes.iterator();
while (i.hasNext()) {
Node<this, kOwner, vOwner> mn =
(Node<this, kOwner, vOwner>) 1i.next();
if (mn.key.equals(key)) return mn.value;

}

return null;

Book (Robert)

Map<ShringwoBddk>wbodks bookw MapettMapgthBeokwdyld, world>();
books.put(“Wisdom”, new Book());
Book<horlbooks=geb(KWigdon")jsdémType/ofDMaptkhows what get returns;
Vector<bhissSthisg, abdakedNedeassedbodks .exposks) expdsbOdks./ /i sExods dhis.

Motivation (ownership & generic Map?)

class Node<nodeOwner>
[KS@mkOwner> extends Comparable<kOwner>, Value<vOwner>] { . . . }
public s Map<mOwner>
[Key<kOwnE extends Comparable<kOwner>, Value<vOwner>] {
private VectdO his>[Node<this>[Key<kOwner>, Value<vOwner>]] pgeres ;
public Vector<tr [Node<this>[Key<kOwner>, Value<vOwner>] pose() {
return this.nodes$
Y
void put (Key<kOwner> key, ue<vOwner> value) {
nodes.add(new Node<this>[KeyY@kOwner>, Value
Y
Value<vOwner> get (Key<kOwner> key)
Iterator<this>[Nodes<this>[Key<kOwg
while(i.hasNext()) {
Node<this>[Key<kOwner>, Vg3
if (mn.key.equals(k))

ner>] (key, value));

Value<vOwner>]] = nodes.iterator();

2<vOwner>] mn
rn mn.value;

i.next();

}

return null;

' Map<this>[Strigl<wor1ld>, Book<world>] books =
new Map< >[String<world>, Book<world>] ();
HaBrREN) 54 R idomOrhen BOBKEWTr1gY (Mgp<this, world, wor O
BeekegdiFt§>WhHsdoPookBEYeBOOW {2dom”) ; // Map type knows what BNt returns
Vel REAYS>INGdRRRhTs8 5t ri¥ngdRBrid>//BBBR<Nok Y] ¥hati88EdNEANG =
Veptoksthiposihjs>/alhasrdNoadehgt RARKS.expose(); // books. is no this.

Motivation (Generic Ownership ™ Map)

class Node<Key extends Comparable, Value, Owner extends World> { . . . }
public class Map<Key extends Comparable, Value, Owner extends World> {
private Vector<Node<Key, Value, This>, This> nodes;
public Vector<Node<Key, Value, This>, This> expose() { return this.nodes; }

public void put(Key key, Value value) {
nodes.add(new Node<Key, Value, This>(key, value));

}
public Value get(Key key) {
Iterator<Node<Key, Value, This>, This> i = nodes.iterator();

while (i.hasNext()) {
Node<Key, Value, This> mn = 1i.next();
if (mn.key.equals(key)) return mn.value;

) Box of My Computer Books

return null;
} Map<this>[String<world>, Book<world>] books =

} new Map<this>[String<world>, Book<world>] ();
books.put(“Wisdom”, new Book<world>());

A e

kor
Boﬁs zét ZW1 sgom”) tl')fg'es of Map knows what get returns

BRE

Vector<this, this> aliasedNodes = books.expose(); // books. is not this.

OlGJ: OWNERSHIP AND
IMMUTABILITY GENERIC JAVA

CAPITAL THINKI =, WELLINGTON

GLOBALLY MIND
MAI | TE IHO KI TE PAE

Ownership + Immutability

e Our previous work

— OGJ: added Ownership to Generic Java
— |GJ: added Immutability to Generic Java

 This work

— OIGJ: combine Ownership + Immutability

— The sum is greater than its parts
* Immutable cyclic data structures (e.g. doubly linked list)
* 1GJ could not type check Java Collections
* OIGJ can, without any code changes

Problem 1: Representation exposure

* |Internal representation leaks to the outside
— private doesn’t offer real protection!
class Class {

private List signers;
public List getSigners() {
return this.signers;

} ﬁ Forgot to copy signers!]
}

— http://java.sun.com/security/getSigners.html

— Bug: the system thinks that code signed by one
identity is signed by a different identity

Solution for Representation Exposure

 Ownership: owner-as-dominator
—Class should own thelist sighers
— No outside alias can exist
— Ownership can be nested: note the tree structure

13

Problem 2: Unintended Modification

* Modification is not explicit in Java
— Can Map.get () modify the map?
for (Object key : map.keySet())
map.get (key) ;

Reorders elements according to
last-accessed (like a cache)

— Throws ConcurrentModificationException for
the following map:

new LinkedHashMap (100, 1, true)

Solution: Immutability

— mutable / immutable

 Readonly references

— mutable / immutable / readonly

class Student {
Date dateOfBirth; .

void setTutor (@ReadOnly Student tutor) @Mutable { ...

}

[Method may modify the this object

}

15

Raw vs Cooked

* Creation of an immutable object
— Raw state: Fields can be assigned
— Cooked state: Fields cannot be assigned
— When does an object become cooked?

* Traditionally
— An object is cooked when its constructor finishes

OIGJ)’s novel idea

* Connect ownership & immutability

— An object is cooked when its owner’s constructor
finishes

— The outside world will not see this cooking phase

— The complex object and its representation
become immutable simultaneously

— Enables creation of immutable cyclic structures

Cooking LinkedList (1 of 2)

\.

R RPROoOoOJo0ldWDNR

0
1:

: LinkedList (Collection<E> c) {

this () ; // Initializes this.header
Entry<E> succ = this.header, pred = succ.prev;
for (E e : c) {
Entry<E> entry =
new Entry<E> (e, succ,pred) ;
// An entry is modified after its constructor finished
pred.next = entry,; pred = entry;
}

succ.prev = pred;

}

* Goal: No refactoring

Cooking LinkedList (2 of 2)

R RPROoOoOJo0ldWDNR

= O

LinkedList (dReadOnly Collection<E> c) (ERaw {

this () ; // Initializes this.header
@This @I Entry<E> succ = this.header, pred = succ.prev;
for (E e : c) {

@This (@I Entry<E> entry =

new @This @I Entry<E>(e,succ,pred) ;
// An entry is modified after its constructor finished
pred.next = entry; pred = entry;

}

succ.prev = pred;

O1GJ

Annotations

ReadOnly

Ownership

nierarchy

World - anyone can access
This —this ownsthe object

Immutability hierarchy
ReadOnly — no modification
Raw — object under construction

Immutability

:class Foo {
// Animmutable reference to an immutable date.
@Immutable Date imD;
// A mutable reference to a mutable date.
@Mutable Date mutD;
// A readonly reference to any date.
@ReadOnly Date roD = ... ? imD : mutD;
// A reference to a date with the same immutability as this.
@I Date sameI;
// Can be called on any receiver; cannot mutate this.
int readonlyMethod() (@ReadOnly {...}
// Can be called only on mutable receivers; can mutate this.
void mutatingMethod () @Mutable {...}

: }

Ownership

1: // Adate with the same owner and immutability as this
@0 @I Date sameD;
2: // Adate owned by this; it cannot leak.
@This @I Date ownedD;
3: // Anyone can access this date.
@World (@I Date publicD;

f

class LinkedList<E> {

@This @I Entry<E> header;

}

class Entry<E> {
@0 @I Entry<E> next, prev;

22

Formalisation: Featherweight OIGJ

* Novel idea: Cookers

— Every object in the heap is of the form:

x—2>Foo<y,Mutable>

— vy is the owner of x
— 7 is the cooker of x, i.e., x becomes cooked when

or

x2>Foo<y, Immutable, >

the constructor of z finishes

— Formalism tracks the ongoing constructors
— Subtyping rules connect cookers and owners

* Proved soundness and type preservation

23

Case Study

* Implementation uses the Checkers Framework

— Only 1600 lines of code (but still a prototype)
— Requires type annotations available in JSR308

* Java Collections case study
— 77 classes, 33K lines of code
— Only 85 ownership-related annotations
— Only 46 immutability-related annotations

Case Study Conclusions

 Verified that collections own their
representation

* Method clone does not type check
— It is broken: shallow copy breaks ownership
e Suggestion: sheep clone

— Ownership-aware copy: between shallow and
deep copy

— Compiler-generated clone that nullifies fields,
and then calls a user-defined copy method

Related Work

Universes

— Relaxed owner-as-dominator to owner-as-modifier
Reference immutability

— C++'sconst

— Javari

Initialisation & Immutability

— X10’s proto (gone?), Frozen object, Flexible
Initialisation

Ownership & Immutability
— JOE;, MOJO, Delayed Types

Conclusions

Ownership Immutability Generic Java (OIG)J)
— Simple, intuitive, static, backward compatible
Connected ownership & immutability

— Cyclic immutable structures, factory and visitor design
patterns

Case study showing usefulness

— No syntax changes or runtime overhead

— Verified encapsulation of Java collections

— Few annotations due to smart defaults

Formal proof of soundness (see TR for FOIGJ:
— https://dspace.mit.edu/handle/1721.1/36850

Follow Up Work

ECOOP 2013

class List{ agpe .
final int e; final List next; The Billion-Dollar Fix
List(int e, List’ next){this.e=e; this.next=next;} Safe Modular Circular Initialisation
} with Placeholders and Placeholder Types

class ListProducer{
List’ mkAll(int e, int n, List’ head){
if(n==1) return new List (e, head);

return new List (e, this.mkAll (e+l, n-1, head)); Victoria University of Wellington
} School of Engineering and Computer Science
{servetto, mackayjuli,alex, kjx}@ecs.vuw.ac.nz

Marco Servetto, Julian Mackay, Alex Potanin, and James Noble

List make(int e, int n) {
List x = this.mkAll(e, n, x);
return x;

} Abstract. Programmers often need to initialise circular structures of objects. Ini-

} tialisation should be safe (so that programs can never suffer null pointer exceptions

or otherwise observe uninitialised values) and modular (so that each part of the

st circular structure can be written and compiled separately). Unfortunately, existing
new ListProducer() .make(100,10) languages do not support modular circular initialisation: programmers in practical

languages resort to Tony Hoare’s “Billion Dollar Mistake™: initialising variables
with nulls, and then hoping to fix them up afterward. While recent research lan-
guages have offered some solutions, none fully support safe modular circular

initialisation.

We present placeholders, a straightforward extension to object-oriented lan-
guages that describes circular structures simply, directly, and modularly. In typed
languages, placeholders can be described by placeholder types that ensure place-
holders are used safely. We define an operational semantics for placeholders, a type
system for placeholder types, and prove soundness. Incorporating placeholders
into object-oriented languages should make programs simultaneously simpler to

write, and easier to write correctly.

@ Springer Link

liasing

in Object-Oriented
] Programming

Aliasing in Object-Oriented Programming. Types, Analysis and Verification pp 233-269 | Cite as

Immutability

Authors Authors and affiliations

Alex Potanin, Johan Ostlund, Yoav Zibin, Michael D. Ernst

Chapter
¢ 6 1.1k

Citations Downloads

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7850)

Abstract

One of the main reasons aliasing has to be controlled, as highlighted in another chapter [1] of
this book [2], is the possibility that a variable can unexpectedly change its value without the
referrer’s knowledge. This book will not be complete without a discussion of the impact of
immutability on reference-abundant imperative object-oriented languages. In this chapter we
briefly survey possible definitions of immutability and present recent work by the authors on

adding immutability to object-oriented languages and how it impacts aliasing.

Keywords

Type System Ownership Type Subtype Relation Pure Method Mutable Reference

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be

updated as the learning algorithm improves.

APPENDIX: OIGJ TYPE RULES

CAPITAL THINKING.

GLOBALLY MI L N\~ TE HERENGA WAKA
MAI | TE IHO KI TE PAE nl®

OIGJ Typing Rules

* 14 typing rules (see paper and TR)

* Our formalisation uses generic types following
our previous work

 We will highlight the following:
— Ownership Nesting
— Field Access
— Field Assignment
— Method Invocation
— Method Guards

(F)OIGJ Syntax: Fields

\\

(i:class Foo<O extends World, I extends ReadOnly> ({
2

// Animmutable reference to an immutable date.
Date<O,Immutable> imD = new Date<O,Immutable> () ;
// A mutable reference to a mutable date.

Date<O,Mutable> mutD = new Date<O,Mutable> () ;

// A readonly reference to any date. Both roD and imD cannot mutate
// their referent, however the referent of roD might be mutated by an
// alias, whereas the referent of 1imD is immutable.
Date<O,ReadOnly> roD = ... ? 1mD : mutD;

// A date with the same owner and immutability as this
Date<O,I> sameD;

// A date owned by this; it cannot leak.

Date<This,I> ownedD;

// Anyone can access this date.

Date<World,I> publicD;

* Every type contains two extra generic parameters

(F)OIGJ Syntax: Methods

f8 // Can be called on any receiver; cannot mutate this.
<I extends ReadOnly>? int readonlyMethod () {...}
9 // Can be called only on mutable receivers; can mutate this.
<I extends Mutable>? void mutatingMethod () {...}
10: // Constructor that can create (im)mutable objects.
<I extends Raw>? Foo (Date<O,I> d) ({
11: this.sameD = d;
12: this.ownedD = new Date<This,I> ()
13: // lllegal, because sameD came from the outside.
// this.sameD.setTime(...);
14 : // OK, because Raw is transitive for owned fields.
this.ownedD.setTime(...) ;
15: }
L

 Method guard <T extends U>? does two things:
— The method can be called only if T extends U
— Inside the method, the bound of T is assumed to be U

Ownership Nesting

List<This, I,Date<World,I>> 11; // Legal nesting
List<World,I,Date<This, I>> 12; // lllegall

* |tisillegal because we can store |2 in this variable:

‘public static Object<World,ReadOnly> alias 12; I

34

Field Access/Assignment

class Foo<O extends World, I extends ReadOnly> {
Date<This, I> ownedD; // this-owned field

Date<9,I> sameD;

<I extends Mutable>? void bar (Foo<This, I> other) {

this.ownedD = ..; // Legal:assignvia this
other.ownedD = ..; // lllegal: notvia this
other.sameD = ..; // Legal:not this-owned

o J o O i W DN

35

Field Assignment

(1 class Foo<O extends World, I extends ReadOnly> {
2 Date<O, I> sameD;
3 <I extends Raw>? void bar (
4 Foo<?,Mutable> mutableFoo,
5 Foo<?,ReadOnly> readonlyFoo,
6 Foo<?,I> rawFool,
7 Foo<This, I> rawFoo2) {
8 mutableFoo.sameD = ..; // Legal:objectisMutable
9 readonlyFoo.sameD = ..; // lllegal: objectis not Raw nor Mutable
10: rawFool.sameD = ..; // lllegal: objectis not this nor this-owned
11: rawFoo2.sameD = ..; // Legal: objectis Rawand this-owned

12: this.sameD = ..; // Legal:objectis Rawand this

Method Invocation

(1 class Foo<O extends World, I extends ReadOnly> {
2 Date<This, I> ml () { .. } // Parameteris this-owned
3 <I extends Raw>? void m2() { .. }
4 <I extends Raw>? void bar (
5 Foo<?,I> rawFool,
6 Foo<This, I> rawFoo2) {
7 this.ml (); // Legal:objectis this
8 : rawFoo2.ml () ; // lllegal: objectisnot this
9 : rawFool.m2 () ; // lllegal: objectis not this nor this-owned
10: rawFoo2.m2 () ; // Legal: both Raw and object is this-owned

11 this.m2 (); // Legal: both Raw and objectis this

Method Guards

class Foo<O extends World, I extends ReadOnly> {
<I extends Raw>? void rawM() { .. }
<I extends Mutable>? void bar (
Foo<?,ReadOnly> readonlyFoo,
Foo<?,I> mutableFoo) {
readonlyFoo.rawM(); // lllegal: ReadOnly is not a subtype of Raw
// The bound of I in this method isMutable
mutableFoo.rawM(); // Legal:Mutable isa subtype of Raw

o O b W DN

~J

this.rawM(); // Legal:Mutable is a subtype of Raw

(00)

Conditional Java (cJ) proposed method guards for Java

38

Final Points

 We use smart defaults:
— Typically @0 and @I
— Statics are @World and @Mutable

* Ownership assumes:
— Inner classes have access to the outer class (a la
Boyapati)

— Local variables can point at anything as long as the
neap invariant is maintained (a la Clarke and
Drossopoulou)

