
Wyvern: Improving
Architecture-Based Security

via a Programming Language
Alex Potanin

1

Software Security is
a Big Problem

2

Why Systems are
Vulnerable?

We "know" how to code securely

Follow the rules: CERT, Oracle, ...

Technical advances: types, memory safety

But we still fail too often!

Root causes

Coding instead of engineering

Human limitations

Unusable tools

3

Our Approach: Usable
Architecture-Based Security

Engineering:
An architecture/design

perspective

Formal Modelling: A mathematical perspective

Usability:
A human perspective

Secure systems
development

λ
4

The Wyvern
Programming Language

Designed for security and
productivity from the ground up

General purpose, but emphasising
web, mobile, and IoT apps

http://wyvernlang.github.io/

5

The Wyvern
Programming Language

But you might ask: "Isn't there a trade
off between security and productivity?

What is Wyvern's secret sauce?

6

Security

Productivity

Shifting the
Tradeoff Curve

7

Security

Productivity

Better expressing and enforcing design could
fundamentally shift the tradeoff curve

Wyvern

Design goals

Sound, modern language design

Type- and memory- safe, mostly
functional, advanced module system

Incorporate usability principles

Security mechanisms built in

8

Wyvern
The Wyvern Approach: Usable Design-Driven Assurance

Usable mechanisms to express and enforce large-scale
design

Support for built-in assurance of critical properties,
especially security

Key mechanisms for expressing and enforcing design

Modules and architecture express high-level design

Extensible notation expresses code-level design

Types, capabilities, and effects are used to enforce design

9

Hello, world!

require stdout

stdout.print("Hello, world!\n")

10

Wyvern Demo:
Immutability

11

SQL Command
Injection

12

SQL Injection: a
Solved Problem?

Evaluation

Usability: unnatural, verbose

Design: string manipulation captures domain poorly

Language semantics: largely lost - just strings

No type checking, IDE services, ...

PreparedStatement s = connection.prepareStatement(
 "SELECT * FROM Students WHERE name = ?;");
s.setString(1, userName);
s.executeQuery(); Prepare a statement

with a hole
Fill the hole

securely

λ
13

Wyvern: Usable
Secure Programming

A SQL query in Wyvern:
connection.executeQuery(~)

 SELECT * FROM Students WHERE name = {studentName}

Claim: the secure version more natural
and more usable

No empirical evaluation, yet

~ introduces a domain-
specific language (DSL) on the

next indented lines

Semantically rich DSL. Can provide type
checking, syntax highlighting, autocomplete, ...

Safely incorporates dynamic data -
as data, not a command

14

Technical Challenge:
Syntax Conflicts

Language extensions as libraries has been tried
before

Example: SugarJ/Sugar* [Erdweg et al, 2010; 2013]

import XML, HTML

val snippet = ~

 How do I parse this example?

Is it XML or HTML?

λ

15

Syntax Conflicts:
Wyvern's Solution

import metadata XML, HTML

val snippet : XML = ~

 How do I parse this example?

metadata keyword indicates we are
importing syntax, not just a library

No ambiguity: the compiler loads the unique
parser associated with the expected type XML

Syntax of language completely unrestricted -
indentation separates from host language

16

Technical Challenge:
Semantics

import metadata SQL
val connection = SQL.connect(...)
val studentName = input(...)
connection.executeQuery(~)
 SELECT * FROM Students WHERE name = {studentName}

λ
Q: Is it safe to run custom parser at compile time?
A: Yes - immutability types used to ensure imported
metadata is purely functional, has no network access, etc.

Language definition includes
custom type checker - can verify
query against database schema

Splicing (as in genes) theory ensures
capture-avoiding substitution in
code generated by SQL extension -
safe to use host language variables

SQL extension has access to
variables and their types in
Wyvern host language

17

Wyvern TSL's
Libraries cannot extend the base syntax of
the language

Instead, notation is associated with types.

"Type-Specific Languages" (TSLs)

A type-specific language can be used within
delimiters to create values of that type.

"Safely-Composable"

18

19

How do you enter
and exit a TSL?

In the base language, several inline delimiters
can be used to create a TSL literal:

If you use the block delimiter tilde (~), there are
no restrictions on the subsequent TSL literal.

Indentation ("layout") determines the end of
the block

20

How do you associate
a TSL with a type?

21

Why not associate a
grammar with a type?

22

TSL Benefits
Modularity and Safe Composability

DSLs are distributed in libraries, along with types

No link-time errors possible

Identifiability

Can easily see when a DSL is being used

Can determine which DSL is being used by identifying expected type

DSLs always generate a value of the corresponding type

Simplicity

Single mechanism that can be described in a few sentences

Specify a grammar in a natural manner within the type

Flexibility

A large number of literal forms can be seen as type-specific languages

Whitespace-delimited blocks can contain arbitrary syntax

23

TSL Limitations
Decidability of Compilation: Because
user-defined code is being evaluated
during parsing and type checking,
compilation might not terminate.

No editor support, but subject of
interesting related work at the
University of Michigan by Cyrus's
research group...

24

Wyvern Demo: Type-
Specific Languages

25

Our Approach: Usable
Architecture-Based Security

Engineering:
Express design in

domain-specific way

Formal Modelling: Type safety, variable hygiene, conflict-free extensions

Usability:
Natural syntax, enabling

IDE support

DSL support in
Wyvern

λ
26

Resource Use

SQL extensions are nice!

But what if people use a low-level,
string-based library anyway?

More broadly, what if people
misuse resource-access libraries?

27

An Old Idea:
Layered Architectures
Lowest layer: an unsafe, low-level library

provides basic access to resources

Middle layer: a higher-level framework

enforces safety invariants over resources

Top layer: the application

Code must obey strict layering

Application must only use the safe framework

Many variants:

Secure networking framework

Safe SQL-access library

Replicated storage library

28

[Dijkstra 1968]

Application Code

Safe high-level framework

Unsafe low-level library

RQ: Can we use capabilities to enforce layered resource access?
* Capability: an unforgeable token controlling access to a resource [Dennis & Van Horn 1966]

Architecture: Principle
of Least Privilege (PoLP)

Every module must be able to
access only the resources
necessary for its legitimate
purpose [Saltzer & Schroeder
75]

Architectural layering example:
Only Safe SQL library may
access the low-level SQL
interface

All other application code

Safe SQL DSL Library

String-based SQL Library

29

Module Linking as
Architecture

require db.stringSQL

application.run()

30

To access external resources like a database,
main requires a capability from the run-time
system. A capability is an unforgeable token

controlling access to a resource.

stringSQL

Module Linking as
Architecture

require db.stringSQL

import db.safeSQL

import app.sqlApplication

val sql = safeSQL(stringSQL)

val application = sqlApplication(sql)

application.run()

31

stringSQL

safeSQL

We must instantiate a sqlApplication object, passing it
the resources it needs. We pass only a capability to
the safe library.

We can import code modules, but they have no
ambient authority to access resources (cf Newspeak).
sqlApplication cannot access the database by itself.

Module Linking as
Architecture

require db.stringSQL

import db.safeSQL

import app.sqlApplication

val sql = safeSQL(stringSQL)

val application = sqlApplication(sql)

application.run()

32

stringSQL

safeSQL

module def sqlApplication(safeSQL : db.SafeSQL)
def run() : Int
 // application code

module def safeSQL(strSQL : db.StringSQL)
// implement ADT in terms of strings

sqlApplication

How Hard to Link it
All Up?

Most Wyvern modules don't have state, can be freely imported

Statically tracked: stateful modules/objects and resource types

type SetM
 resource type Set
 def add(v : Int)
 def isMember(v : Int) : Bool
 def makeSet() : Set

module setM : SetM

module def client(aFile : File)
import setM ...

resource types capture state or system access: other types do not

Useful design documentation; e.g. MapReduce tasks should be stateless

Supports powerful equational reasoning, safe concurrency, etc.

33

resource type File
 def write(s : String)

Type of modules is pure; no static state. Objects
created by module may be stateful resources, though.

Resources must be passed in; pure
modules can just be imported.

Provides access
to OS resource

Checking PoLP with
Effects

// in signature of the rawSQL module

effect UnsafeQuery

type Connection

def connect(...) : Connection

def query(q:String) : {UnsafeQuery} Data

// client code

def getData(input : String) : Data

 rawSQL.query("SELECT * FROM Students WHERE name = '" + input + "';")

34

The unsafe SQL library defines
an UnsafeSQL effect

Query operations have an
UnsafeQuery effect

Error: getData() must declare
effect rawSQL.UnsafeQuery

Has effect rawSQL.UnsafeQueryNB! In Wyvern Effect is a
"Resource.Operation" pair.

Checking PoLP with
Effects

// in signature of the rawSQL module

effect UnsafeQuery

type Connection

def connect(...) : Connection

def query(q:String) : {UnsafeQuery} Data

// client code

def getData(input : String) : {rawSQL.UnsafeQuery} Data

 rawSQL.query("SELECT * FROM Students WHERE name = '" + input + "';")

35

The unsafe SQL library defines
an UnsafeSQL effect

Query operations have an
UnsafeQuery effect

All dangerous code marked
with effect

Has effect rawSQL.UnsafeQueryNB! In Wyvern Effect is a
"Resource.Operation" pair.

Effect Abstraction
Issue: won't users of the safeSQL library have an UnsafeQuery
effect, if safe SQL is built on rawSQL?

module def safeSQL(rawSQL : RawSQL) : SafeSQL

type SQL

 metadata ...

abstract effect SafeQuery = rawSQL.UnsafeQuery

def query(SQL) : {SafeQuery} Data

 ...

36

The safeSQL functor
uses a rawSQL module

Defines a SQL ADT with
metadata for parsing

The SafeQuery effect is
defined in terms of
UnsafeQuery. This

definition is abstract -
hidden from clients.

Now clients have effect
safeSQL.SafeQuery

Q: Can't any library do this, potentially hiding unsafe queries?
A: Potentially, but can mechanically check only trusted libraries do so

Effect System
Usability

Isn't it a pain to declare all these effects?

Case in point: exception specifications in Java

We can bound a module's effects by its capabilities

No need to effect-annotate the module

Does assume capability-safety (cf JS Frozen Realms)

module def client(safeSQL : SafeSQL) : Client

import ...

37

Client Code

Safe SQL DSL Library

Client can have effect
safeSQL.SafeQuery (and nothing else)

If safeSQL defines higher-order functions, make
sure the argument is allowed to have the

SafeQuery effect (cf contravariant subtyping).Imports may not be
resources - no effects.

Our Approach: Usable
Architecture-Based Security

Engineering:
Architectural restrictions

on resource use

Formal Modelling: effect- and capability- safety, effect bounds

Usability:
Bound effects based on

architecture

Effects and
capabilities in

Wyvern

λ
38

Wyvern Demo:
Effects

39

Wyvern Demo:
Effects

40

Editor

Logger

Plugin

Annotated

Not Annotated

Configured to log either to
a file or a network

uses

uses uses

Higher Order
Effects

module def repeaterPlugin(defaultLogger : Logger)

var logger : Logger = defaultLogger

def setLogger(logger : Logger) : Unit

 logger = newLogger

41

λ
Our solution lifts polymorphism to the
module level where the state is created

We would like to assign this
function an effect polymorphic type

But the function might assign to local state, so the effect of
newLogger must be bounded by the overall effect of the module

(cf polymorphism and state more generally)

Alternative: Effect
Inference

Effect Inference

Only applies if you have the code

Usability issues

can fail because of something deep in
the code

can succeed, then fail if the code
changes

42

Sidenote: Wyvern
Formalisation

Built up from simply typed Lambda
Calculus with recursive records

Via classes translated to objects

Via modules translated back to classes
and objects system

As “onion layers” with type members and
effects added progressively

43

Sidenote: Type
Members

More expressive than type parameters but harder to
reason about

Recent DOT result on soundness that we extended
by exploring how to achieve decidability

We support both type members with structural
subtyping and

Nominal declaration of explicit subtype
relationships of objects that include bounded type
members

44

Wyvern Demo:
Capabilities

45

Sealers / Unsealers

46

require stdout

import wyvern.String
import wyvern.option
type Option = option.Option

resource type SealedBox
 def shareContent():Unit

resource type BrandSealer
 def seal(object:Option):SealedBox

resource type BrandUnsealer
 def unseal(box:SealedBox):Option

resource type BrandPair
 var name:String
 var sealer:BrandSealer
 var unsealer:BrandUnsealer

Sealers / Unsealers

47

def makeBrandPair(name:String):BrandPair
 var shared:Option = option.None()
 def makeSealedBox(object:Option):SealedBox
 val newBox:SealedBox = new
 def shareContent():Unit
 shared = object
 newBox
 new
 var name:String = name
 var sealer:BrandSealer = new
 def seal(object:Option):SealedBox
 makeSealedBox(object)
 var unsealer:BrandUnsealer = new
 def unseal(box:SealedBox):Option
 shared = option.None()
 box.shareContent()
 var result:Option = shared
 result

Sealers / Unsealers

48

// Simple example of using brand pair from E Wiki:
var alexBrandPair:BrandPair = makeBrandPair("Alex")
var jonathanBrandPair:BrandPair = makeBrandPair("Jonathan")

var alexBox:SealedBox = alexBrandPair.sealer.seal(option.Some("Alex's"))
var jonathanBox:SealedBox = jonathanBrandPair.sealer.seal(option.Some("Jonathan's"))

string = alexBrandPair.unsealer.unseal(alexBox).getOrElse(() => "NOTHING")
stdout.print(string + "\n")

string = jonathanBrandPair.unsealer.unseal(jonathanBox).getOrElse(() => "NOTHING")
stdout.print(string + "\n")

string = alexBrandPair.unsealer.unseal(jonathanBox).getOrElse(() => "NOTHING")
stdout.print(string + "\n")

string = jonathanBrandPair.unsealer.unseal(alexBox).getOrElse(() => "NOTHING")
stdout.print(string + "\n")

Mint Example (E)

49

resource type Mint
 def makePurse(balance:Int):Purse
 def print():Unit

resource type Purse
 def getBalance():Int
 def sprout():Purse
 def getDecr():SealedBox
 def deposit(amount:Int, src:Purse):Unit
 def print():Unit

Mint Example (E)

50

def makeMint(name:String):Mint
 var brandPair:BrandPair = makeBrandPair(name)
 new (selfMint) =>
 def makePurse(balance:Int):Purse
 var balance:Int = balance
 val decr = (amount:Int) => (balance = balance - amount)
 new (selfPurse) =>
 def getBalance():Int = balance
 def sprout():Purse = selfMint.makePurse(0)
 def getDecr():SealedBox = brandPair.sealer.seal(option.Some(decr))
 def deposit(amount:Int, src:Purse):Unit
 brandPair.unsealer.unseal(src.getDecr()).getOrElse(() =>
 ((a:Int) => (-1)))(amount)
 balance = balance + amount
 def print():Unit
 stdout.print("Purse that has ")
 stdout.printInt(balance)
 stdout.print(" bucks from mint named " + brandPair.name + "\n")
 def print():Unit
 stdout.print("Mint named " + brandPair.name + "\n")

Mint Example (E)

51

var carolMint:Mint = makeMint("Carol")
carolMint.print()

var aliceMainPurse:Purse = carolMint.makePurse(1000)
aliceMainPurse.print()

var bobMainPurse:Purse = carolMint.makePurse(0)
bobMainPurse.print()

var paymentForBob:Purse = aliceMainPurse.sprout()
paymentForBob.print()

paymentForBob.deposit(10, aliceMainPurse)
paymentForBob.print()

bobMainPurse.deposit(10, paymentForBob)
bobMainPurse.print()
aliceMainPurse.print()

Caretaker

52

require stdout

import wyvern.String
import wyvern.option
type Option = option.Option

resource type Carol
 def playWith1():Unit
 def playWith2():Unit

type Bob
 def playWith(carol:Carol):Unit

Caretaker

53

var bob:Bob = new
 def playWith(carol:Carol):Unit
 carol.playWith1()
 carol.playWith2()

var carol1:Carol = new
 def playWith1():Unit
 stdout.print("Playing on the playground 1\n")
 def playWith2():Unit
 stdout.print("Playing on the playground 2\n")

stdout.print("Using Carol directly:\n")
bob.playWith(carol1)

Caretaker

54

resource type Revoker
 def revoke():Unit

// TODO: We need Wyvern to support forwarding of methods
// somehow for this to work generically.
resource type CarolRevoker
 def carol():Carol
 def revoker():Revoker

Caretaker

55

def makeCarolRevoker(carol:Carol):CarolRevoker
 var target:Option = option.Some(carol)
 new
 def carol():Carol
 new (thisCarol) =>
 var blankCarol:Carol = new
 def playWith1():Unit = stdout.print("playWith1 REVOKED\n")
 def playWith2():Unit = stdout.print("playWith2 REVOKED\n")
 def playWith1():Unit
 target.getOrElse(() => thisCarol.blankCarol).playWith1()
 def playWith2():Unit
 target.getOrElse(() => thisCarol.blankCarol).playWith2()
 def revoker():Revoker
 new
 def revoke():Unit
 target = option.None()

Caretaker

56

stdout.print("Creating Carol with caretaker.\n")
var carolRevoker:CarolRevoker = makeCarolRevoker(carol1)

stdout.print("Doing it with Carol via caretaker:\n")
var carol2:Carol = carolRevoker.carol()
bob.playWith(carol2)

stdout.print("Doing it with Carol via caretaker after revoking:\n")
var revoker:Revoker = carolRevoker.revoker()
revoker.revoke()
bob.playWith(carol2)

