
Wyvern Formalisation: Objects, Classes, 
Modules, Type Members

A/Prof Alex Potanin



The Internet [of Things]

• JavaScript
• Ruby on Rails
• Java
• Flash
• PHP
• Python
• Coffee Script
• …

• Cross-Site Scripting (XSS)
• Cross-Site Request Forgery 

(CSRF)
• Injection Attacks
• Insecure Direct Object 

References
• Broken Authentication and 

Session Management
• …

(OWASP Top 10)



Wyvern

A web and mobile programming language 
that is secure by default.

http://wyvernlang.github.io/

Our Goal: To simultaneously enhance security and 
productivity for mobile and web applications by co-

designing a language, its types, and its libraries.



4



What’s Pure OO?

• State encapsulation (OO)
• Uniform access principle (Meyer)
• Interoperability and uniform treatment 

(Cook)



Wyvern Core 0: Extended Lambda 
Calculus



Wyvern Core 1: Adding Objects



Wyvern Core 1: Sample Program
1 type Lot =
2 def value : Int
3
4 def purchase(q : Int, p : Int) : Lot =
5 new
6 var quantity : Int = q
7 var price : Int = p
8 def value : Int = this.quantity * this.price
9
10 var aLot : Lot = purchase(100, 100)
11 var value : Int = aLot.value



Classes are Not Essential

e.g. Self and JavaScript

…but they are convenient.

We believe classes should be syntactic 
sugar on top of a foundational object-
oriented core.



Wyvern Core 2: Adding Classes



Wyvern Core 2: Translating Classes

1 class Option
2 var quantity : Int = 0
3 var price : Int = 0
4 def exercise : Int = ...
5
6 class var totalQuantityIssued : Int = 0
7 class def issue(q : Int,
8 p : Int) : Option =
9 new
10 var quantity : Int = q
11 var price : Int = p
12
13 var optn : Option = Option.issue(100, 50)
14 var ret : Int = optn.exercise

1 type Option =
2 def exercise : Int
3
4 type OptionClass =
5 def issue : Int -> Int -> Option
6
7 var Option : OptionClass =
8 new
9 var totalQuantityIssued : Int = 0
10 def issue(q : Int,
11 p : Int) : Option =
12 new
13 var quantity : Int = q
14 var price : Int = p
15 def exercise : Int = ...
16
17 var optn : Option = Option.issue(100, 50)
18 var ret : Int = optn.exercise

OO Wyvern Core 1OO Wyvern with Classes



Wyvern with Modules Example 1

resource module wyvern/examples/logging

import wyvern/collections/List
require filesystem

resource type Log
def log(x:String)

def makeLog(path:String):Log
val logFile = filesystem.openForAppend(path)
val messageList = List.make()
new

def log(x:String)
messageList.append(x)
logFile.print(x)

12

require filesystem

instantiate wyvern/examples/logging(filesystem)
instantiate myapplication(logging)

myapplication.start() 



Wyvern with Modules Example 2

13



Wyvern Core 3A: Adding Modules

14



Wyvern Core 3A: Adding Modules

15



Wyvern Modules Summary

• We prove an “authority safety theorem” that 
guarantees using our type system whether a 
module is stateful or pure based on a points-to 
relation.

• We provide a translation from the more abstract 
grammar to the base grammar very similar to 
Wyvern Cores and prove the latter sound.

• We depeloped a threat/attacker model to be able 
to demonstrate our module access guarantees by 
utilising the capabilities.

• Type members are part of the module’s signatures 
(next step)

16



Why Add Type Members to 
Wyvern?

• Much discussion of type members since Beta and 
gBeta and later Scala adopting them

• Type members can encode generics but are more 
expressive and require less annotations, e.g.

def copyCell(c:Cell):Cell
new Cell

type t = c.t
val data : t = c.data

versus

def copyCell<T>(c:Cell<T>):Cell<T> ...

17



Why Add Type Members to 
Wyvern?

datatype DiverseTree
case type Leaf
type T
val v:T

case type Branch
val t1:DiverseTree
val t2:DiverseTree

18



Why Add Type Members to 
Wyvern?

type Table
type Key
type Value
def get(k:Key):Value
def add(v:Value):Key

// the Key type of the returned table is 
abstract
def newTable<ValueType>()

:Table<Value=ValueType>

19



Wyvern Core 3B: Adding Type 
Members

20



Adding Type Members
by Julian Mackay @ VUW

• A lot of work in the 90’s (including Atsushi Igarashi).
• Wyvern Type Members are based on those in Scala.
• Recent work by Nada Amin, Tiark Rompf et al. on trying to prove a 

type system with full type members support sound (FOOL 2012, 
OOPSLA 2016)
– https://lampwww.epfl.ch/~amin/cv/

• Recent work also by Ondřej Lhoták:
– https://plg.uwaterloo.ca/~olhotak/Publications.html

• Issues with just proving preservation include:
– Path equality problem (we do not evaluate paths till required)
– Inability to resolve some type members during type checking due 

to environment narrowing (we keep track of the declared type)
– Nonsensical expansions of declarations and loss of well formedness

when combining environment narrowing and intersection types (we 
try to avoid environment narrowing at all costs)

– Subtype transitivity problem (complex mutual induction in proofs)
– And much more, so see my “Decidable Subtyping for Path 

Dependent Types” talk J
21

https://lampwww.epfl.ch/~amin/cv/
https://plg.uwaterloo.ca/~olhotak/Publications.html

