
Capabili'es for Effects

A/Prof Alex Potanin

CAPABILITY-FLAVOURED EFFECTS

Formalism by Aaron Craig as Undergraduate Thesis student at VUW in
2017/2018

Capability Safety
● Capability-safe languages prohibit ambient authority

– All authority derives from previous authority,
starting at the entry point of the program

– A component can't exercise authority unless you
give it a capability to do so

● Can be used to quantify risk of executing code
[Drossopolou] and ensure least privilege [Saltzer]

● Do capabilities help existing formal reasoning
techniques, such as effects?

Effects
● Describe “intensional information” about how a program

executes (Neilson & Nelson)
– Int → Int (unannotated function type)
– Int –{File.write}→ Int (annotated function type)

● Limited mainstream use; too verbose? (Rytz)
● Inference helps reduce verbosity

– Need to analyse source code
– Back to manual reasoning if it fails

Capability-Flavoured Effects
● In a capability-safe setting, any effect on a resource

must happen through a capability
● By tracking capabilities, we also track effects
● What can we say at the boundary where annotated

code passes capabilities into unannotated code?

• import(File.append)
logger: String –{File.append}→ Unit

in
e // arbitrary, unannotated code

Capability-Flavoured Effects
● Can safely determine effects of unannotated code by

inspecting the capabilities we give it
– Only have to inspect its type, not its source code

● Effect-conscious capability-safe code can reason
about what untrusted, capability-safe code will do

● Our work: formulates a minimal, sound lambda
calculus and type system to demonstrate this

Imports

● Pass in capabilities, execute unannotated code
● Unannotated code must type with exactly the free

variables imported
● Programmer selects authority as {File.*}
● Statically: accept/reject, if {File.*} is a safe upper-

bound on effects

import(File.append)
log: String –{File.append}→ Unit

in

log(“doing some logging”)

Multiple Imports

● Input to pureApply has same type as makeFile
(modulo effect annotations)

● Don't want pureApply to violate its annotation by
incurring a File.create effect in the unannotated
code

● Need to ensure all imports are allowed the selected
authority before passing them in

import(File.*)
makeFile: Unit –{File.create}→ Unit
pureApply: (Unit –∅→ Unit) –∅→ Unit

in
pureApply(makeFile)

Higher-Order Effects
● Regular effect: you possess capability for effect
● Higher-order effect: allowed to incur effect, but you

need to be given the capability

… // some omitted set up code
def log(msg: String, sock: Socket) =

file.append(“hello”)
sock.append(“they're logging”)

● Assuming this typechecks...
– File.append is a regular effect

– Socket.append is higher order

Higher-Order Safety
● An annotated type τ is higher-order safe for a set of

effects ε if ε ⊆ ho-effects(τ)
● Intuitively: an expression of type τ must be allowed

to incur the effects in ε
● To safely check an import, all imports must be

higher-order safe for the selected authority

import(File.create)
makeFile: Unit –{File.create}→ Unit
pureApply: (Unit –∅→ Unit) –∅→ Unit

in
pureApply(log)

Return Types

● Unannotated code might return a function/capability
● Need to annotate it with effects to safely effect-check

rest of annotated code

let result =
import(File.*)
f: {File}

in
def tricky(): Unit =
f.write(“hello”)

result()

● The type of tricky is Unit → Unit, which annotates as
Unit –{File.*}→ Unit

Return Types

● Unannotated code might return a function that can
later be used elsewhere in the annotated world

● Need to understand what effects it has to safely
effect-check annotated code using it

import(File.*)
f: {File}

in

def tricky(): Unit =
f.write(“hello”)

● The type of tricky is Unit → Unit, which annotates as
Unit –{File.*}→ Unit

Returning Higher-Order Effects

● Safe to execute this code
● Unsafe to annotate return type with {File.*}
● Must make sure return type doesn't ask for a

capability (Socket) whose effects haven't been
selected

– This example rejects because String → Socket
→ Unit has the higher-order effects {Socket.*}

import(File.*)
f: {File}

in

def myFunc(msg: String, s: Socket): Unit =
s.write(“they're logging”)
f.write(msg)

Polymorphic Types

● Polymorphic types let you write type-generic code
● Polymorphic effects let you write effect-generic code

// Define a new effect to simplify function definition
effect write = {File.write, Socket.write}

// Takes a write function, uses it to write a message, logs
def writeData<φ ⊆ write>(s: String, write: String –φ→ Unit) =

write(s)
file.append(“wrote to writer”)

type WriteDataFunc = typeof(writeData)

Polymorphic Imports

● Can approximate effects of writeData with its
polymorphic upper bound {File.write, Socket.write}

● Can approximate effects of the unannotated code as
{File.append, File.write, Socket.write}

effect write = {File.write, Socket.write}
import(File.append, File.write, Socket.write)
writeData: WriteDataFunc<write>
fwriter: String –{File.write, File.append}→ Unit

in

e

Polymorphic Imports

● Lots of generic code doesn't have an upper bound on
its possible effects

– map, fold/reduce, filter, zip, collections

● To incur an effect with generics you must instantiate
with something concrete that can invoke the effect

– Capability for the effect must have been imported

● Can tighten the upper-bound by looking at other
capabilities that have been imported

Polymorphic Imports

● Nothing imported can incur Socket.write so we can
ignore that as a possibility for writeData

● Upper-bound on writeData tightens to {File.write}
● Better approximation of effects of e is {File.write,

File.append}

effect write = {File.write, Socket.write}
import(File.append, File.write, Socket.write)
writeData: WriteDataFunc<write>
fwriter: String –{File.write, File.append}→ Unit

in

e

Overall

● Capability-safe design enables reasoning at module
boundaries about the effects of unannotated code

● Must restrict capabilities passed in based on their
higher-order effects

● Finer reasoning needed for useful polymorphics

CAPABILITIES: EFFECTS FOR FREE

Paper by Aaron Craig, Alex Potanin, Lindsay Groves, and Jonathan Aldrich
at ICFEM 2018 conference

Mo'va'on

Approach

Basic Language

Adding Effects

Adding Effects

Adding Capabilities

This logger exceeds its authority so will be rejected!

Adding Capabilities

Example: Impor'ng Logger

Example: Higher Order Effects

Type and Effect Checking for Imports

Most type and effect rules are straightforward, but…

Typing Imports – First AXempt

Typing Imports – Second Attempt

Typing Imports – Third Attempt

Typing Imports – Fourth (and Final)
Attempt

Dis'nc'on between direct and higher-order effects needs to be pushed further!

Conclusions

APPROXIMATING POLYMORPHIC
EFFECTS WITH CAPABILITIES

Implementation by Justin Lubin as Undergraduate RA at CMU in the
summer of 2018

Goal
Allow secure and ergonomic mixing of effect-
unannotated code with effect-annotated
code in a realis-c capability-safe
programming language.

Object Capabilities
Capabilities
Unforgeable objects that give
particular parts of the code

access to sensitive resources

Capability-safe language
A language in which the only way to
access sensitive resources is via
capabilities

module def logger(myFile : File)
...

module def main(platform : Platform)
val myFile = file(platform)
val myLogger = logger(myFile)
...

Effect Systems
Effect system

Annotations on methods describing effects they can incur

Capability-based effect system

Way of formally reasoning about capabilities (awesome!)

Downside: verbosity

Capability-Safe Import Seman'cs
Prior work (Craig et al.)

Import semantics for capability-safe lambda calculus

Limitation

Does not handle mutable state nor effect polymorphism

Our goal
Scale up to a more realistic programming language

The Problem
Effect polymorphism and mutability

resource type Logger
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String)
var logger : Logger = ...
def setLogger(newLogger : Logger) : Unit
logger = newLogger

def run(s : String) : String
val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

The Problem

Question: How will annotated
code use reversePlugin?

Effect polymorphism + mutability
⇒ log effect could be anything!

resource type Logger
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String)
var logger : Logger = ...
def setLogger(newLogger : Logger) : Unit
logger = newLogger

def run(s : String) : String
val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

The Problem

QuesNon: How will annotated
code use reversePlugin?

Effect polymorphism + mutability
⇒ log effect could be anything!

resource type Logger
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String)
var logger : Logger = ...
def setLogger(newLogger : Logger) : Unit
logger = newLogger

def run(s : String) : String
val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

The Problem

Question: How will annotated
code use reversePlugin?

Effect polymorphism + mutability
⇒ log effect could be anything!

Solution
Quantification lifting

resource type Logger
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String)
var logger : Logger = ...
def setLogger(newLogger : Logger) : Unit
logger = newLogger

def run(s : String) : String
val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

Quan'fica'on Liiing: Idea

● Lift effect polymorphism from inside ML-style module functor to the functor itself
● Collapse each universal effect quantification into single quantified effect E

○ Serves as effect bound for all methods in module

resource type Logger[effect E]
def append(contents : String) : {E} Unit

module def reversePlugin[effect E](name : String)
var logger : Logger[E] = ...
def setLogger(newLogger : Logger[E]) : {E} Unit
logger = newLogger

def run(s : String) : {E} String
val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

resource type Logger
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String)
var logger : Logger = ...
def setLogger(newLogger : Logger) : Unit
logger = newLogger

def run(s : String) : String
val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

Quan'fica'on Liiing: Idea

● Lift effect polymorphism from inside ML-style module functor to the functor itself
● Collapse each universal effect quantification into single quantified effect E

○ Serves as effect bound for all methods in module

resource type Logger[effect E]
def append(contents : String) : {E} Unit

module def reversePlugin[effect E](name : String)
var logger : Logger[E] = ...
def setLogger(newLogger : Logger[E]) : {E} Unit
logger = newLogger

def run(s : String) : {E} String
val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

import fileLogger, databaseLogger, reversePlugin
val logger1 = fileLogger(...)
val logger2 = databaseLogger(...)
val plugin = reversePlugin[logger1.log](“archive”)
def main() : {logger1.log} Unit
plugin.setLogger(logger1)
// plugin.setLogger(logger2) <-- not allowed!

Quan'fica'on Liiing: Usage

resource type MyPlugin
def setLogger(newLogger : Logger’) : {logger1.log} Unit
def run(s : String) : {logger1.log} String

resource type Logger’
effect log = {logger1.log}
def append(contents : String) : {log} Unit

resource type Logger
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String)
var logger : Logger = ...
def setLogger(newLogger : Logger) : Unit
logger = newLogger

def run(s : String) : String
val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

Quantification Lifting: Import Bounds

● Something to be careful about: bounds on new universally-quan'fied polymorphism
○ Upper bound: Craig et al. import seman'cs
○ Lower bound: Capability-safety

resource type Logger[effect E]
def append(contents : String) : {E} Unit

module def reversePlugin[effect E](name : String)
var logger : Logger[E] = ...
def setLogger(newLogger : Logger[E]) : {E} Unit
logger = newLogger

def run(s : String) : {E} String
val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

E
1

Quantification Lifting: Type-Level
Transformation
Benefit
Don’t need code ahead of 'me, only type signature
● Dynamic loading (plugins)
● Compiled code
● Third-party libraries

Drawback
Over-approxima'on of possibly-incurred effects

Quantification Lifting: Type-Level
Transformation

τ1 → τ2

∀ε (L ⊆ ε ⊆ U) . τ1 → (τ2)ε

Before:

After:

Related Work
Effect inference
● Operates on expressions

● Gives exact bound on effects that can be incurred

Algebraic effects
● Has a different goal
● We use the effect system to formally/statically reason about

capabilities

Observations
● Capabilities are good way of managing non-transitive access to system

resources

● Effect systems can formalize capability-based reasoning, but can be
verbose

● Craig et al.’s import semantics work great for lambda calculus

● Quantification lifting handles tricky interaction between effect
polymorphism and mutable state

Example Summary
resource type Logger

effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String)
var logger : Logger = ...
def setLogger(newLogger : Logger) : Unit

logger = newLogger
def run(s : String) : String

val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

resource type Logger[effect E]
def append(contents : String) : {E} Unit

module def reversePlugin[effect E](name : String)
var logger : Logger[E] = ...
def setLogger(newLogger : Logger[E]) : {E} Unit

logger = newLogger
def run(s : String) : {E} String

val t = s.reverse()
logger.append(name + “: ” + s + “ -> ” + t)
t

import fileLogger, databaseLogger, reversePlugin
val logger1 = fileLogger(...)
val logger2 = databaseLogger(...)
val plugin = reversePlugin[logger1.log](“archive”)
def main() : {logger1.log} Unit

plugin.setLogger(logger1)
// plugin.setLogger(logger2) <-- not allowed!

resource type MyPlugin
def setLogger(newLogger : Logger’) : {logger1.log} Unit
def run(s : String) : {logger1.log} String

resource type Logger’
effect log = {logger1.log}
def append(contents : String) : {log} Unit

Thank you for the course!

