Capabilities for Effects

A/Prof Alex Potanin

CAPITAL THINKING

GLOBALLY MINDED. N\~ TE HERENGA WAKA
MAI | TE IHO KI TE PAE

Formalism by Aaron Craig as Undergraduate Thesis student at VUW in
2017/2018

CAPABILITY-FLAVOURED EFFECTS

CAPITAL THINKING yosd WELLINGTON

GLOBALLY MINDED. N\~ TE HERENGA WAKA
MAI | TE IHO KI TE PAE

Capability Safety

. Capability-safe languages prohibit ambient authority
- All authority derives from previous authority,
starting at the entry point of the program

- A component can't exercise authority unless you
give it a capability to do so

. Can be used to quantify risk of executing code
[Drossopolou] and ensure least privilege [Saltzer]

. Do capabilities help existing formal reasoning
techniques, such as effects?

Effects

Describe “intensional information” about how a program

executes (Neilson & Nelson)
- Int » Int (unannotated function type)

- Int -{File.write}-» Int (annotated function type)

Limited mainstream use; too verbose? (Rytz)

Inference helps reduce verbosity
- Need to analyse source code

- Back to manual reasoning if it fails

Capability-Flavoured Effects

. In a capability-safe setting, any effect on a resource

must happen through a capability
By tracking capabilities, we also track effects

. What can we say at the boundary where annotated

code passes capabilities into unannotated code?

« import(File.append)

logger: String -{File.append}-» Unit
in
e // arbitrary, unannotated code

Capability-Flavoured Effects

. Can safely determine effects of unannotated code by

inspecting the capabilities we give it
- Only have to inspect its type, not its source code

. Effect-conscious capability-safe code can reason

about what untrusted, capability-safe code will do

. Our work: formulates a minimal, sound lambda

calculus and type system to demonstrate this

Imports

import(File.append)
log: String -{File.append}» Unit

in

log(“doing some logging”)

Pass in capabilities, execute unannotated code

Unannotated code must type with exactly the free
variables imported

Programmer sel/ects authority as {File.*}

. Statically: accept/reject, if {File.*} is a safe upper-

bound on effects

Multiple Imports

import(File.*)
makeFile: Unit -{File.create}» Unit
pureApply: (Unit -¢-» Unit) -¢-» Unit
in
pureApply(makeFile)

. Input to pureApply has same type as makeFile
(modulo effect annotations)

. Don't want pureApply to violate its annotation by
incurring a File.create effect in the unannotated
code

. Need to ensure all imports are allowed the selected
authority before passing them in

Higher-Order Effects

Reqgular effect: you possess capability for effect

Higher-order effect: allowed to incur effect, but you
need to be given the capability

.. // some omitted set up code
def log(msg: String, sock: Socket) =
file.append(“hello”)

sock.append(“they're logging”)

Assuming this typechecks...
- File.append is a regular effect

- Socket.append is higher order

Higher-Order Safety

. An annotated type t is higher-order safe for a set of
effects € if e © ho-effects(t)

. Intuitively: an expression of type t must be allowed
to incur the effects in €

. To safely check an import, all imports must be
higher-order safe for the selected authority

import(File.create)
makeFile: Unit -{File.create}» Unit
pureApply: (Unit -@¢-» Unit) -¢- Unit
in
pureApply(log)

Return Types

Unannotated code might return a function/capability

Need to annotate it with effects to safely effect-check
rest of annotated code

let result =
import(File.*)
f: {File}
in
def tricky(): Unit =
f.write(“hello”)
result()

. The type of tricky is unit - Unit, which annotates as

Unit -{File.*}» Unit

Return Types

Unannotated code might return a function that can
later be used elsewhere in the annotated world

Need to understand what effects it has to safely
effect-check annotated code using it
import(File.*)
f: {File}
in
def tricky(): Unit =
f.write(“hello”)

. The type of tricky is unit - Unit, which annotates as
Unit -{File.*}» Unit

Returning Higher-Order Effects

import(File.*)
f: {File}

in
def myFunc(msg: String, s: Socket): Unit =

s.write(“they're logging”)
f.write(msg)

. Safe to execute this code
Unsafe to annotate return type with {File.*}

Must make sure return type doesn't ask for a
capability (socket) whose effects haven't been
selected

- This example rejects because String -» Socket

-» Unit has the higher-order effects {Socket. *}

Polymorphic Types

. Polymorphic types let you write type-generic code
. Polymorphic effects let you write effect-generic code

// Define a new effect to simplify function definition
effect write = {File.write, Socket.write}

// Takes a write function, uses it to write a message, logs
def writeData<p € write>(s: String, write: String -¢-» Unit) =
write(s)
file.append(“wrote to writer”)

type WriteDataFunc = typeof(writeData)

Polymorphic Imports

effect write = {File.write, Socket.write}
import(File.append, File.write, Socket.write)
writeData: WriteDataFunc<write>

fwriter: String -{File.write, File.append}-» Unit
in

e

. Can approximate effects of writepata with its
polymorphic upper bound {File.write, Socket.write}

. Can approximate effects of the unannotated code as
{File.append, File.write, Socket.write}

Polymorphic Imports

. Lots of generic code doesn't have an upper bound on
its possible effects
- map, fold/reduce, filter, zip, collections

. To incur an effect with generics you must instantiate

with something concrete that can invoke the effect
- Capability for the effect must have been imported

. Can tighten the upper-bound by looking at other
capabilities that have been imported

Polymorphic Imports

effect write = {File.write, Socket.write}
import(File.append, File.write, Secket-write)
writeData: WriteDataFunc<write>
fwriter: String -{File.write, File.append}-» Unit
in

e

Nothing imported can incur Socket.write SO we can
ignore that as a possibility for writeData

Upper-bound on writeData tightens to {File.write}

Better approximation of effects of e is {File.write,
File.append}

Overall

. Capability-safe design enables reasoning at module
boundaries about the effects of unannotated code

. Must restrict capabilities passed in based on their

higher-order effects

. Finer reasoning needed for useful polymorphics

Paper by Aaron Craig, Alex Potanin, Lindsay Groves, and Jonathan Aldrich
at ICFEM 2018 conference

CAPABILITIES: EFFECTS FOR FREE

CAPITAL THINKING yosd WELLINGTON

GLOBALLY MINDED. N\~ TE HERENGA WAKA
MAI | TE IHO KI TE PAE

Motivation

@ Consider a program which calls a logger component:
module def logger(f:{File}) :Logger
2 def log(x: String): Unit

module def client (logger: Logger)
2 def run(): Unit = logger.log(x)

e We pass the logger a file expecting it to append to it.
e But how do we ensure that is all it does?

@ In Java, once the logger has the file, it can do anything it wants:
“ambient authority”.

@ Capabilites have been used informally to reason about resource
use — can we use them formally?

Approach

@ We look at adding capability-based reasoning to a formal system
for reasoning about resource use.

@ Specifically, a small effect calculus based on the \-calculus, with
operations on resources.

@ Rich enough to capture examples written in a subset of a
capability-safe language, Wyvern.

@ Look at how we can minimise the need for effect annotations in
order to make such a system easier to use.

@ Using capabilities allows us to bound the effects of unannotated
code without needing to annotate it.

Basic Language

We start with a very simple language with operations on resources.

e = exprs :
X variable T u= types :
v value | {r} resource set
ee application | T —T function
e.w operation
[= type cix :
vV = values : | %) empty ctx
| r resource literal | X7 binding
| AX :T.€ abstraction

@ Semantics uses reduction relation e — e (ignoring operations).
@ Type system has judgements: '+ e : 7.
@ Shows types of inputs and outputs, but nothing about effects.

Adding Effects

Add annotations to function types to show the effects that may occur.

e = exprs .
X variable
v value

ee application r
e.m operation
V = values :
| r resource literal

| AX . T.€ abstraction ©

Effects are sets of resource-operation pairs.

types :

{r} resource set
T —e T function
type ctx :

%) empty cix.
X7 binding
effects :

{rm} effect set

Adding Effects

@ Semantics uses reduction relation e — e | ¢,
where ¢ is the effects that occur during evaluation of e.

@ Type/effect system has judgements: ' - e : 7 withe.

So we can check what effects may occur during evaluation of e.

@ But this requires extensive annotation, which is tedious in practice.

E.g. Java unchecked exceptions are often criticised and often
misused.

@ Also, we may want to import third-party code which is not
annotated.

Adding Capabilities

@ Key idea is to combine annotated and unannotated code.

e Allow annotated code to import unannotated code.
@ passing it the capabilities (resources) it needs.
e and specifying the effects they are permitted to have.

@ Combine the languages of unannotated and annotated code.
using hat (e.g. &) in the formalism to distinguish them.

@ Add a new statement: import(es) x =@ in e

e e is the unannotated code being imported

e ¢ is the capability being passed to e, which is bound to x in e.

@ ¢, is the set of effects which e is allowed to have (“selected
authority”).

@ E.g. import(File.append) X =File in Ay : Unit. x.write.

This logger exceeds its authority so will be rejected!

Adding Capabilities

@ Semantics uses reduction relation e — e | .

We are only concerned with executing annotated code.

@ To execute unannotated code which is imported, we annotate it
with the selected authority.

~ ~ E-IMPORTZ2
import(es) X =V in € — [V/x|annot(e,cs) | & ()

@ annot(e,es) just adds e to function arrows in e.

© 0 N o o » W N =

_ = e e e ek
o o0 A W N =+ O

Example: Importing Logger

let Makelogger =
(AMf: File.
import (File.append) f = f in
Ax: Unit. f.append) in

let MakeClient =
(AMlogger: Logger.
Ax: Unit. logger unit) in

let MakeMain =
(AMf: File.
let loggerModule = MakelLogger f in
let clientModule = MakeClient loggerModule in
clientModule unit) in

MakeMain File

Note: 1et expression is usual syntactic sugar.

Example: Higher Order Effects

let malicious =
(import () y=unit in
Af: Unit — Unit. f£()) in

1
2

3

4

5 let plugin =
6 (AMf: {File}.

7 malicious (Ax:Unit. f.read)) in
8

9

let MakeMain =
10 (AMf: {File}.
11 plugin f) in

13 MakeMain File

Type and Effect Checking for Imports

Most type and effect rules are straightforward, but...

For import, we want a rule of the form:

s - (e-IMPORT)
[F import(eg) X =€ine:--- with ---

e What type and effects does the import expression have?

e What assumptions do we need?

Typing Imports — First Attempt

[+&:7withey X:erase(f)Fe:r

R - (e-IMPORT1)
[F import(es) X =€ in € : annot(7,es5) with esU g4

@ Assume arbitrary type and effect for é.

@ Must be able to type e, given just that x has type 7,
to ensure e uses only the capabilities provided to it.

@ ¢ is unannotated while 7 is annotated, so we erase the
annotations from 7.

@ e has type 7 — but 7 Is unannotated, so we annotate with €s-

@ Evaluating e has all effects in ¢ and ¢g.

Typing Imports — Second Attempt

5 Fﬁi: fwithe; X:erase(f)Fe:7 |effects(?)C 83](5-|MPORT2)

import(eg) X =€ in €: annot(7,&s) with e U &1

[@ First version allows any capability to be passed to e. }

@ Restrict e so that its effects are contained in es.

@ effects collects all the effects captured by its argument.

effects({r})={rn|rer,nmell}
effects(?y —¢ o) = effects(fy)UeUeffects()

1 import ({File.x})

2 go = Ax: Unit —g Unit. X unit
3 f = File

4 1in

5 go (Ay: Unit. f.write)

Typing Imports — Third Attempt

[H&:7withey effects(?)Ces

[ho-safe(?,ss)] X:erase(T)Fe:T

= ~ (e-IMPORT3)
[+ import(es) X =€ in €: annot(7,e5) with e U ey

effects({r})={rn|rer,n e}
effects(Ty —¢ 7o) = ho-effects(fy) UeUeffects(7n)

ho-effects({r}) =9
ho-effects(fy —¢ T2) = effects(7y) Uho-effects(7o)
@ Need to distinguish “direct” effects from “higher-order” effects.

@ And ensure safe use of resources: imported capabilities must be
expecting the effects they are passed by unannotated code.

Typing Imports — Fourth (and Final)
Attempt

effects(#) Uho-effects(annot(r,d)) C s

[H&:7withey Tho-safe(f,es) X:erase(f)he:r
- (e-IMPORT)

[+ import(es) X =& in e: annot(7,e5) with 5 U ey

Distinction between direct and higher-order effects needs to be pushed further!

safe(T,¢)

. er,mell} C
{rejrenm ree (SAFE-RESOURCE)

e C¢ ho-safe(?),e) safe(f,e)
safe(f] =g T, €)

(SAFE-ARROW)

ho-safe(%,¢€)

ho-sate({7},¢) (HOSAFE-RESOURCE)

safe(7],€) ho-safe(T,¢)

- n (HOSAFE-ARROW)
ho-safe(T1 —¢ 12,€)

Conclusions

@ We can now check examples like the ones given earlier and safely
reject ones that violate the granted authority.

@ Doesn’t require programmers to add effect annotations.

@ Relies on type checking, not effect checking — doesn’t require
unannotated expressions to be analysed for their effects.

Implementation by Justin Lubin as Undergraduate RA at CMU in the
summer of 2018

APPROXIMATING POLYMORPHIC
EFFECTS WITH CAPABILITIES

CAPITAL THINKING vosd WELLINGTON

GLOBALLY MINDED. N\~ TE HERENGA WAKA
MAI | TE IHO KI TE PAE

Goal

Allow secure and ergonomic mixing of effect-
unannotated code with effect-annotated
code in a realistic capability-safe
programming language.

VICTORIA UNIVERSITY OF

CAPITAL THINKING

GLOBALLY MINDED. N\~ TE HERENGA WAKA

MAI | TE IHO KI TE PAE

Object Capabilities
Capabilities

Unforgeable objects that give
. module def logger(myFile : File)
particular parts of the code

access to sensitive resources
module def main(platform : Platform)

.] val myLogger = logger(myFile)
A language in which the only way to
access sensitive resources is via

capabilities

™ne—] VICTORIA UNIVERSITY OF

CAPITAL THINKING vosd WELLINGTON

GLOBALLY MINDED. N\~ TE HERENGA WAKA

MAI | TE IHO KI TE PAE

NEW ZEALAND

Effect Systems

Effect system

Annotations on methods describing effects they can incur

Capability-based effect system

Way of formally reasoning about capabilities (awesome!)

Downside: verbosity

™ne—] VICTORIA UNIVERSITY OF

CAPITAL THINKING vosd WELLINGTON

GLOBALLY MINDED. N\~ TE HERENGA WAKA

MAI | TE IHO KI TE PAE

Capability-Safe Import Semantics

Prior work (Craig et al.)

Import semantics for capability-safe lambda calculus
Limitation

Does not handle mutable state nor effect polymorphism

Our goal
Scale up to a more realistic programming language

™ne—] VICTORIA UNIVERSITY OF

CAPITAL THINKING

GLOBALLY MINDED.

MAI | TE IHO KI TE PAE

The Problem

Effect polymorphism and mutability

CAPITAL THINKING

GLOBALLY MINDED. N\~ TE HERENGA WAKA

MAI | TE IHO KI TE PAE

The Problem

resource type Logger
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) Question: How will C”’.'”Otated
var logger : Logger = ... code use reversePlugin?

def setLogger(newLogger : Logger) : Unit
logger = newLogger

def run(s : String) : String
val t = s.reverse()

Effect polymorphism + mutability
= log effect could be anything!

“w, n

logger.append(name + “:” + s+ “->" + t)
t

VICTORIA UNIVERSITY OF

CAPITAL THINKING

h 4
A A 4

GLOBALLY MINDED. yosd WELLINGTON

N\~ TE HERENGA WAKA
MAI I TE IHO KI TE PAE

NEW ZEALAND

The Problem

resource type L@
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) Question: How will ar.)notated
var logger : Logger = ... code use reversePlugin?

def setLogger(newLogger : Logger) : Unit
logger = newlLogger

def run(s : String) : String
val t = s.reverse()

Effect polymorphism + mutability
= log effect could be anything!

“w, n

logger.append(name + “:” + s+ “->" + t)
t

VICTORIA UNIVERSITY OF

CAPITAL THINKING

h 4
A A 4

GLOBALLY MINDED. yosd WELLINGTON

N\~ TE HERENGA WAKA
MAI I TE IHO KI TE PAE

NEW ZEALAND

The Problem

resource type Logger
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) Question: How will annotated

in 7’
er . Logger = ... code use reversePlugin:
def setLogger(newLogger : Logger) : Unit

Effect polymorphism + mutability
= log effect could be anything!

logger = newLogger
def run(s : String) : String
val t = s.reverse()

logger.append(name + “:” + s+ “->" + t)
t

VICTORIA UNIVERSITY OF

CAPITAL THINKING. =
GLOBALLY MINDED. WELLINGTON

N\~ TE HERENGA WAKA
MAI I TE IHO KI TE PAE

NEW ZEALAND

Solution

Quantification lifting

VICTORIA UNIVERSITY OF

CAPITAL THINKING

GLOBALLY MINDED. yosd WELLINGTON

N\~ TE HERENGA WAKA
MAI I TE IHO KI TE PAE

NEW ZEALAND

Quantification Lifting: Idea

resource type Logger resource type Logger[effect E]

effect log def append(contents : String) : {E} Unit
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) module def reversePlugin[effect E](name : String)
var logger : Logger = ... var logger : Logger[E] = ...
def setLogger(newlLogger : Logger) : Unit def setLogger(newlLogger : Logger[E]) : {E} Unit
logger = newlLogger logger = newLogger
def run(s : String) : String def run(s : String) : {E} String
val t = s.reverse() val t = s.reverse()
logger.append(name + “:” +s+ “->" + 1) logger.append(name + “:” +s+ “->" + 1)
t t

e Lift effect polymorphism from inside ML-style module functor to the functor itself
e Collapse each universal effect quantification into single quantified effect E
o Serves as effect bound for all methods in module

VICTORIA UNIVERSITY OF

CAPITAL THINKING wsd WELLINGTON

GLOBALLY MINDED. =

TE HERENGA WAKA
MAI | TE IHO KI TE PAE

NEW ZEALAND

Quantification Lifting: Idea

resource type Logger resource type Logger|[effect E]

effect log def append(contents : String) : {E} Unit
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) module def reversePlugiffeffect E](name : String)
var logger : Logger = ... var logger : Logger|[E] = ...
def setLogger(newlLogger : Logger) : Unit def setLogger(newlLogger : Logger[E]) : {E} Unit
logger = newlLogger logger = newlLogger
def run(s : String) : String def run(s : String) : {E} String
val t = s.reverse() val t = s.reverse()
logger.append(name + “:” +s+ “->" + 1) logger.append(name + “:” +s+ “->" +1)
t t

e Lift effect polymorphism from inside ML-style module functor to the functor itself
e Collapse each universal effect quantification into single quantified effect E
o Serves as effect bound for all methods in module

VICTORIA UNIVERSITY OF

CAPITAL THINKING wsd WELLINGTON

GLOBALLY MINDED. =

TE HERENGA WAKA
MAI | TE IHO KI TE PAE

NEW ZEALAND

Quantification Lifting:

import fileLogger, databaselogger, reversePlugin

val logger1 = fileLogger(...)

val logger2 = databaselogger(...)

val plugin = reversePlugin[loggerl.log](“archive”)

def main() : {loggerl.log} Unit
plugin.setLogger(loggerl)

resource type MyPlugin
def setLogger(newlLogger : Logger’) : {loggerl.log} Unit
def run(s : String) : {logger1.log} String

resource type Logger’
effect log = {loggerl.log}
def append(contents : String) : {log} Unit

CAPITAL THINKING

GLOBALLY MINDED.

MAI | TE IHO KI TE PAE

Usage

™ne—] VICTORIA UNIVERSITY OF

yosd WELLINGTON

TE HERENGA WAKA

NEW ZEALAND

Quantification Lifting: Import Bounds

resource type Logger resource type Logger|[effect E]

effect log def append(contents : String) : {E} Unit
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) module def reversePlugin[effect E](name : String)
var logger : Logger = ... var logger : Logger|[E] = ...
def setLogger(newlLogger : Logger) : Unit def setLogger(newlLogger : Logger[E]) : {E} Unit
logger = newlLogger logger = newlLogger
def run(s : String) : String def run(s : String) : {E} String
val t = s.reverse() val t = s.reverse()
logger.append(name + “:” +s+ “->" + 1) logger.append(name + “:” +s+ “->" +1)
t t

® Something to be careful about: bounds on new universally-quantified polymorphism
O Upper bound: Craig et al. import semantics
O Lower bound: Capability-safety E

VICTORIA UNIVERSITY OF

CAPITAL THINKING wsd WELLINGTON

GLOBALLY MINDED. =

TE HERENGA WAKA
MAI | TE IHO KI TE PAE

NEW ZEALAND

Quantification Lifting: Type-Level

Transformation

Benefit

Don’t need code ahead of time, only type signature
e Dynamic loading (plugins)

e Compiled code

® Third-party libraries

Drawback
Over-approximation of possibly-incurred effects

CAPITAL THINKING

GLOBALLY MINDED. N\~ TE HERENGA WAKA

MAI | TE IHO KI TE PAE

Quantification Lifting: Type-Level
Transformation

Before.' T % T,

After: Ve(LSeCSU). 1 ().

CAPITAL THINKING

GLOBALLY MINDED.
MAI I TE IHO KI TE PAE

Related Work

Effect inference
e QOperates on expressions

® Gives exact bound on effects that can be incurred

Algebraic effects
e Has a different goal
e We use the effect system to formally/statically reason about
capabilities

™ne—] VICTORIA UNIVERSITY OF

CAPITAL THINKING

GLOBALLY MINDED.

MAI | TE IHO KI TE PAE

Observations

e Capabilities are good way of managing non-transitive access to system
resources

® Effect systems can formalize capability-based reasoning, but can be
verbose

e Craig et al’s import semantics work great for lambda calculus

® Quantification lifting handles tricky interaction between effect
polymorphism and mutable state

™ne—] VICTORIA UNIVERSITY OF

CAPITAL THINKING wsd WELLINGTON

GLOBALLY MINDED. N\~ TE HERENGA WAKA

MAI | TE IHO KI TE PAE

NEW ZEALAND

Example Summary

resource type Logger resource type Logger[effect E]
effect log def append(contents : String) : {E} Unit

def append(contents : String) : {log} Unit

module def reversePlugin(name : String) module def reversePlugin[effect E](name : String)
var logger : Logger = ... var logger : Logger[E] = ...
def setLogger(newlLogger : Logger) : Unit def setLogger(newlLogger : Logger[E]) : {E} Unit
logger = newlLogger logger = newlLogger
def run(s : String) : String def run(s : String) : {E} String
val t = s.reverse() val t = s.reverse()
logger.append(name + “:” +s+ “->" +1) logger.append(name + “:” +s+“->" +1)
t t
import fileLogger, databaselogger, reversePlugin resource type MyPlugin
val loggerl = fileLogger(...) def setLogger(newlLogger : Logger’) : {loggerl.log} Unit
val logger2 = databaselogger(...) def run(s : String) : {loggerl.log} String
val plugin = reversePlugin[loggerl.log](“archive”)
def main() : {loggerl.log} Unit resource type Logger’
plugin.setLogger(loggerl) effect log = {loggerl.log}

def append(contents : String) : {log} Unit

1897 VICTORIA UNIVERSITY OF

CAPITAL THINKING. yosd WELLINGTON

GLOBALLY MINDED. N\~ TE HERENGA WAKA
MAI | TE IHO KI TE PAE

Thank you for the course!

VICTORIA UNIVERSITY OF

CAPITAL THINKIN =
GLOBALLY MINDE WELLINGTON

N\~ TE HERENGA WAKA
MAI I TE IHO KI TE PAE

NEW ZEALAND

