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Capability Safety

. Capability-safe languages prohibit ambient authority
- All authority derives from previous authority,
starting at the entry point of the program

- A component can't exercise authority unless you
give it a capability to do so

. Can be used to quantify risk of executing code
[Drossopolou] and ensure least privilege [Saltzer]

. Do capabilities help existing formal reasoning
techniques, such as effects?



Effects

Describe “intensional information” about how a program

executes (Neilson & Nelson)
- Int » Int (unannotated function type)

- Int -{File.write}-» Int (annotated function type)

Limited mainstream use; too verbose? (Rytz)

Inference helps reduce verbosity
- Need to analyse source code

- Back to manual reasoning if it fails



Capability-Flavoured Effects

. In a capability-safe setting, any effect on a resource

must happen through a capability
By tracking capabilities, we also track effects

. What can we say at the boundary where annotated

code passes capabilities into unannotated code?

« import(File.append)

logger: String -{File.append}-» Unit
in
e // arbitrary, unannotated code



Capability-Flavoured Effects

. Can safely determine effects of unannotated code by

inspecting the capabilities we give it
- Only have to inspect its type, not its source code

. Effect-conscious capability-safe code can reason

about what untrusted, capability-safe code will do

. Our work: formulates a minimal, sound lambda

calculus and type system to demonstrate this



Imports

import(File.append)
log: String -{File.append}» Unit

in

log(“doing some logging”)

Pass in capabilities, execute unannotated code

Unannotated code must type with exactly the free
variables imported

Programmer sel/ects authority as {File.*}

. Statically: accept/reject, if {File.*} is a safe upper-

bound on effects



Multiple Imports

import(File.*)
makeFile: Unit -{File.create}» Unit
pureApply: (Unit -¢-» Unit) -¢-» Unit
in
pureApply(makeFile)

. Input to pureApply has same type as makeFile
(modulo effect annotations)

. Don't want pureApply to violate its annotation by
incurring a File.create effect in the unannotated
code

. Need to ensure all imports are allowed the selected
authority before passing them in



Higher-Order Effects

Reqgular effect: you possess capability for effect

Higher-order effect: allowed to incur effect, but you
need to be given the capability

.. // some omitted set up code
def log(msg: String, sock: Socket) =
file.append(“hello”)

sock.append(“they're logging”)

Assuming this typechecks...
- File.append is a regular effect

- Socket.append is higher order



Higher-Order Safety

. An annotated type t is higher-order safe for a set of
effects € if e © ho-effects(t)

. Intuitively: an expression of type t must be allowed
to incur the effects in €

. To safely check an import, all imports must be
higher-order safe for the selected authority

import(File.create)
makeFile: Unit -{File.create}» Unit
pureApply: (Unit -@¢-» Unit) -¢- Unit
in
pureApply(log)



Return Types

Unannotated code might return a function/capability

Need to annotate it with effects to safely effect-check
rest of annotated code

let result =
import(File.*)
f: {File}
in
def tricky(): Unit =
f.write(“hello”)
result()

. The type of tricky is unit - Unit, which annotates as

Unit -{File.*}» Unit



Return Types

Unannotated code might return a function that can
later be used elsewhere in the annotated world

Need to understand what effects it has to safely
effect-check annotated code using it
import(File.*)
f: {File}
in
def tricky(): Unit =
f.write(“hello”)

. The type of tricky is unit - Unit, which annotates as
Unit -{File.*}» Unit



Returning Higher-Order Effects

import(File.*)
f: {File}

in
def myFunc(msg: String, s: Socket): Unit =

s.write(“they're logging”)
f.write(msg)

. Safe to execute this code
Unsafe to annotate return type with {File.*}

Must make sure return type doesn't ask for a
capability (socket) whose effects haven't been
selected

- This example rejects because String -» Socket

-» Unit has the higher-order effects {Socket. *}



Polymorphic Types

. Polymorphic types let you write type-generic code
. Polymorphic effects let you write effect-generic code

// Define a new effect to simplify function definition
effect write = {File.write, Socket.write}

// Takes a write function, uses it to write a message, logs
def writeData<p € write>(s: String, write: String -¢-» Unit) =
write(s)
file.append(“wrote to writer”)

type WriteDataFunc = typeof(writeData)



Polymorphic Imports

effect write = {File.write, Socket.write}
import(File.append, File.write, Socket.write)
writeData: WriteDataFunc<write>

fwriter: String -{File.write, File.append}-» Unit
in

e

. Can approximate effects of writepata with its
polymorphic upper bound {File.write, Socket.write}

. Can approximate effects of the unannotated code as
{File.append, File.write, Socket.write}



Polymorphic Imports

. Lots of generic code doesn't have an upper bound on
its possible effects
- map, fold/reduce, filter, zip, collections

. To incur an effect with generics you must instantiate

with something concrete that can invoke the effect
- Capability for the effect must have been imported

. Can tighten the upper-bound by looking at other
capabilities that have been imported



Polymorphic Imports

effect write = {File.write, Socket.write}
import(File.append, File.write, Secket-write)
writeData: WriteDataFunc<write>
fwriter: String -{File.write, File.append}-» Unit
in

e

Nothing imported can incur Socket.write SO we can
ignore that as a possibility for writeData

Upper-bound on writeData tightens to {File.write}

Better approximation of effects of e is {File.write,
File.append}



Overall

. Capability-safe design enables reasoning at module
boundaries about the effects of unannotated code

. Must restrict capabilities passed in based on their

higher-order effects

. Finer reasoning needed for useful polymorphics



Paper by Aaron Craig, Alex Potanin, Lindsay Groves, and Jonathan Aldrich
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Motivation

@ Consider a program which calls a logger component:
module def logger(f:{File}) :Logger
2 def log(x: String): Unit

module def client (logger: Logger)
2 def run(): Unit = logger.log(x)

e We pass the logger a file expecting it to append to it.
e But how do we ensure that is all it does?

@ In Java, once the logger has the file, it can do anything it wants:
“ambient authority”.

@ Capabilites have been used informally to reason about resource
use — can we use them formally?



Approach

@ We look at adding capability-based reasoning to a formal system
for reasoning about resource use.

@ Specifically, a small effect calculus based on the \-calculus, with
operations on resources.

@ Rich enough to capture examples written in a subset of a
capability-safe language, Wyvern.

@ Look at how we can minimise the need for effect annotations in
order to make such a system easier to use.

@ Using capabilities allows us to bound the effects of unannotated
code without needing to annotate it.



Basic Language

We start with a very simple language with operations on resources.

e = exprs :
X variable T u= types :
v value | {r} resource set
ee application | T —T function
e.w operation
[ = type cix :
vV = values : | %) empty ctx
| r resource literal | X7 binding
| AX :T.€ abstraction

@ Semantics uses reduction relation e — e (ignoring operations).
@ Type system has judgements: '+ e : 7.
@ Shows types of inputs and outputs, but nothing about effects.



Adding Effects

Add annotations to function types to show the effects that may occur.

e = exprs .
X variable
v value

ee application r
e.m operation
V = values :
| r resource literal

| AX . T.€ abstraction ©

Effects are sets of resource-operation pairs.

types :

{r} resource set
T —e T function
type ctx :

%) empty cix.
X7 binding
effects :

{rm} effect set



Adding Effects

@ Semantics uses reduction relation e — e | ¢,
where ¢ is the effects that occur during evaluation of e.

@ Type/effect system has judgements: ' - e : 7 withe.

So we can check what effects may occur during evaluation of e.

@ But this requires extensive annotation, which is tedious in practice.

E.g. Java unchecked exceptions are often criticised and often
misused.

@ Also, we may want to import third-party code which is not
annotated.



Adding Capabilities

@ Key idea is to combine annotated and unannotated code.

e Allow annotated code to import unannotated code.
@ passing it the capabilities (resources) it needs.
e and specifying the effects they are permitted to have.

@ Combine the languages of unannotated and annotated code.
using hat (e.g. &) in the formalism to distinguish them.

@ Add a new statement: import(es) x =@ in e

e e is the unannotated code being imported

e ¢ is the capability being passed to e, which is bound to x in e.

@ ¢, is the set of effects which e is allowed to have (“selected
authority”).

@ E.g. import(File.append) X =File in Ay : Unit. x.write.

This logger exceeds its authority so will be rejected!



Adding Capabilities

@ Semantics uses reduction relation e — e | .

We are only concerned with executing annotated code.

@ To execute unannotated code which is imported, we annotate it
with the selected authority.

~ ~ E-IMPORTZ2
import(es) X =V in € — [V/x|annot(e,cs) | & ( )

@ annot(e,es) just adds e to function arrows in e.
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Example: Importing Logger

let Makelogger =
(AMf: File.
import (File.append) f = f in
Ax: Unit. f.append) in

let MakeClient =
(AMlogger: Logger.
Ax: Unit. logger unit) in

let MakeMain =
(AMf: File.
let loggerModule = MakelLogger f in
let clientModule = MakeClient loggerModule in
clientModule unit) in

MakeMain File

Note: 1et expression is usual syntactic sugar.



Example: Higher Order Effects

let malicious =
(import () y=unit in
Af: Unit — Unit. f£()) in

1
2

3

4

5 let plugin =
6 (AMf: {File}.

7 malicious (Ax:Unit. f.read)) in
8

9

let MakeMain =
10 (AMf: {File}.
11 plugin f) in

13 MakeMain File



Type and Effect Checking for Imports

Most type and effect rules are straightforward, but...

For import, we want a rule of the form:

s - (e-IMPORT)
[ F import(eg) X =€ine:--- with ---

e What type and effects does the import expression have?

e What assumptions do we need?



Typing Imports — First Attempt

[+&:7withey X:erase(f)Fe:r

R - (e-IMPORT1)
[F import(es) X =€ in € : annot(7,es5) with esU g4

@ Assume arbitrary type and effect for é.

@ Must be able to type e, given just that x has type 7,
to ensure e uses only the capabilities provided to it.

@ ¢ is unannotated while 7 is annotated, so we erase the
annotations from 7.

@ e has type 7 — but 7 Is unannotated, so we annotate with €s-

@ Evaluating e has all effects in ¢ and ¢g.



Typing Imports — Second Attempt

5 Fﬁi: fwithe; X:erase(f)Fe:7 |effects(?)C 83](5-|MPORT2)

import(eg) X =€ in €: annot(7,&s) with e U &1

[ @ First version allows any capability to be passed to e. }

@ Restrict e so that its effects are contained in es.

@ effects collects all the effects captured by its argument.

effects({r})={rn|rer,nmell}
effects(?y —¢ o) = effects(fy)UeUeffects()

1 import ({File.x})

2 go = Ax: Unit —g Unit. X unit
3 f = File

4 1in

5 go (Ay: Unit. f.write)



Typing Imports — Third Attempt

[H&:7withey effects(?)Ces

[ho-safe(?,ss)] X:erase(T)Fe:T

= ~ (e-IMPORT3)
[+ import(es) X =€ in €: annot(7,e5) with e U ey

effects({r})={rn|rer,n e}
effects(Ty —¢ 7o) = ho-effects(fy) UeUeffects(7n)

ho-effects({r}) =9
ho-effects(fy —¢ T2) = effects(7y) Uho-effects(7o)
@ Need to distinguish “direct” effects from “higher-order” effects.

@ And ensure safe use of resources: imported capabilities must be
expecting the effects they are passed by unannotated code.



Typing Imports — Fourth (and Final)
Attempt

effects(#) Uho-effects(annot(r,d)) C s

[H&:7withey Tho-safe(f,es) X:erase(f)he:r
- (e-IMPORT)

[+ import(es) X =& in e: annot(7,e5) with 5 U ey

Distinction between direct and higher-order effects needs to be pushed further!

safe(T,¢)

. er,mell} C
{rejrenm ree (SAFE-RESOURCE)

e C¢ ho-safe(?),e) safe(f,e)
safe(f] =g T, €)

(SAFE-ARROW)

ho-safe(%,¢€)

ho-sate({7},¢) (HOSAFE-RESOURCE)

safe(7],€) ho-safe(T,¢)

- n (HOSAFE-ARROW)
ho-safe(T1 —¢ 12,€)



Conclusions

@ We can now check examples like the ones given earlier and safely
reject ones that violate the granted authority.

@ Doesn’t require programmers to add effect annotations.

@ Relies on type checking, not effect checking — doesn’t require
unannotated expressions to be analysed for their effects.
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Goal

Allow secure and ergonomic mixing of effect-
unannotated code with effect-annotated
code in a realistic capability-safe
programming language.
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Object Capabilities
Capabilities

Unforgeable objects that give
. module def logger(myFile : File)
particular parts of the code

access to sensitive resources
module def main(platform : Platform)

. ] val myLogger = logger(myFile)
A language in which the only way to
access sensitive resources is via

capabilities
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Effect Systems

Effect system

Annotations on methods describing effects they can incur

Capability-based effect system

Way of formally reasoning about capabilities (awesome!)

Downside: verbosity
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Capability-Safe Import Semantics

Prior work (Craig et al.)

Import semantics for capability-safe lambda calculus
Limitation

Does not handle mutable state nor effect polymorphism

Our goal
Scale up to a more realistic programming language
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The Problem

Effect polymorphism and mutability
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The Problem

resource type Logger
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) Question: How will C”’.'”Otated
var logger : Logger = ... code use reversePlugin?

def setLogger(newLogger : Logger) : Unit
logger = newLogger

def run(s : String) : String
val t = s.reverse()

Effect polymorphism + mutability
= log effect could be anything!

“w, n

logger.append(name + “:” + s+ “->" + t)
t
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The Problem

resource type L@
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) Question: How will ar.)notated
var logger : Logger = ... code use reversePlugin?

def setLogger(newLogger : Logger) : Unit
logger = newlLogger

def run(s : String) : String
val t = s.reverse()

Effect polymorphism + mutability
= log effect could be anything!
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t
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The Problem

resource type Logger
effect log
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) Question: How will annotated

in 7’
er . Logger = ... code use reversePlugin:
def setLogger(newLogger : Logger) : Unit

Effect polymorphism + mutability
= log effect could be anything!

logger = newLogger
def run(s : String) : String
val t = s.reverse()

logger.append(name + “:” + s+ “->" + t)
t
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Solution

Quantification lifting
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Quantification Lifting: Idea

resource type Logger resource type Logger[effect E]

effect log def append(contents : String) : {E} Unit
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) module def reversePlugin[effect E](name : String)
var logger : Logger = ... var logger : Logger[E] = ...
def setLogger(newlLogger : Logger) : Unit def setLogger(newlLogger : Logger[E]) : {E} Unit
logger = newlLogger logger = newLogger
def run(s : String) : String def run(s : String) : {E} String
val t = s.reverse() val t = s.reverse()
logger.append(name + “:” +s+ “->" + 1) logger.append(name + “:” +s+ “->" + 1)
t t

e Lift effect polymorphism from inside ML-style module functor to the functor itself
e Collapse each universal effect quantification into single quantified effect E
o Serves as effect bound for all methods in module
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Quantification Lifting: Idea

resource type Logger resource type Logger|[effect E]

effect log def append(contents : String) : {E} Unit
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) module def reversePlugiffeffect E](name : String)
var logger : Logger = ... var logger : Logger|[E] = ...
def setLogger(newlLogger : Logger) : Unit def setLogger(newlLogger : Logger[E]) : {E} Unit
logger = newlLogger logger = newlLogger
def run(s : String) : String def run(s : String) : {E} String
val t = s.reverse() val t = s.reverse()
logger.append(name + “:” +s+ “->" + 1) logger.append(name + “:” +s+ “->" +1)
t t

e Lift effect polymorphism from inside ML-style module functor to the functor itself
e Collapse each universal effect quantification into single quantified effect E
o Serves as effect bound for all methods in module
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Quantification Lifting:

import fileLogger, databaselogger, reversePlugin

val logger1 = fileLogger(...)

val logger2 = databaselogger(...)

val plugin = reversePlugin[loggerl.log](“archive”)

def main() : {loggerl.log} Unit
plugin.setLogger(loggerl)

resource type MyPlugin
def setLogger(newlLogger : Logger’) : {loggerl.log} Unit
def run(s : String) : {logger1.log} String

resource type Logger’
effect log = {loggerl.log}
def append(contents : String) : {log} Unit

CAPITAL THINKING
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Quantification Lifting: Import Bounds

resource type Logger resource type Logger|[effect E]

effect log def append(contents : String) : {E} Unit
def append(contents : String) : {log} Unit

module def reversePlugin(name : String) module def reversePlugin[effect E](name : String)
var logger : Logger = ... var logger : Logger|[E] = ...
def setLogger(newlLogger : Logger) : Unit def setLogger(newlLogger : Logger[E]) : {E} Unit
logger = newlLogger logger = newlLogger
def run(s : String) : String def run(s : String) : {E} String
val t = s.reverse() val t = s.reverse()
logger.append(name + “:” +s+ “->" + 1) logger.append(name + “:” +s+ “->" +1)
t t

® Something to be careful about: bounds on new universally-quantified polymorphism
O Upper bound: Craig et al. import semantics
O Lower bound: Capability-safety E
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Quantification Lifting: Type-Level

Transformation

Benefit

Don’t need code ahead of time, only type signature
e Dynamic loading (plugins)

e Compiled code

® Third-party libraries

Drawback
Over-approximation of possibly-incurred effects
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Quantification Lifting: Type-Level
Transformation

Before.' T % T,

After: Ve(LSeCSU). 1 ().
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Related Work

Effect inference
e QOperates on expressions

® Gives exact bound on effects that can be incurred

Algebraic effects
e Has a different goal
e We use the effect system to formally/statically reason about
capabilities

™ne—] VICTORIA UNIVERSITY OF

CAPITAL THINKING

GLOBALLY MINDED.

MAI | TE IHO KI TE PAE




Observations

e Capabilities are good way of managing non-transitive access to system
resources

® Effect systems can formalize capability-based reasoning, but can be
verbose

e Craig et al’s import semantics work great for lambda calculus

® Quantification lifting handles tricky interaction between effect
polymorphism and mutable state
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Example Summary

resource type Logger resource type Logger[effect E]
effect log def append(contents : String) : {E} Unit

def append(contents : String) : {log} Unit

module def reversePlugin(name : String) module def reversePlugin[effect E](name : String)
var logger : Logger = ... var logger : Logger[E] = ...
def setLogger(newlLogger : Logger) : Unit def setLogger(newlLogger : Logger[E]) : {E} Unit
logger = newlLogger logger = newlLogger
def run(s : String) : String def run(s : String) : {E} String
val t = s.reverse() val t = s.reverse()
logger.append(name + “:” +s+ “->" +1) logger.append(name + “:” +s+“->" +1)
t t
import fileLogger, databaselogger, reversePlugin resource type MyPlugin
val loggerl = fileLogger(...) def setLogger(newlLogger : Logger’) : {loggerl.log} Unit
val logger2 = databaselogger(...) def run(s : String) : {loggerl.log} String
val plugin = reversePlugin[loggerl.log](“archive”)
def main() : {loggerl.log} Unit resource type Logger’
plugin.setLogger(loggerl) effect log = {loggerl.log}

def append(contents : String) : {log} Unit
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Thank you for the course!
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